您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 电子产品的热设计方法
2020/5/131产品的热设计方法2介绍为什么要进行热设计?高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致元件失效。3介绍热设计的目的控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度。最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。在本次讲座中将学到那些内容风路的布局方法、产品的热设计计算方法、风扇的基本定律及噪音的评估方法、海拔高度对热设计的影响及解决对策、热仿真技术、热设计的发展趋势。4概述风路的设计方法:通过典型应用案例,让学员掌握风路布局的原则及方法。产品的热设计计算方法:通过实例分析,了解散热器的校核计算方法、风量的计算方法、通风口的大小的计算方法。风扇的基本定律及噪音的评估方法:了解风扇的基本定律及应用;了解噪音的评估方法。海拔高度对热设计的影响及解决对策:了解海拔高度对风扇性能的影响、海拔高度对散热器及元器件的影响,了解在热设计如何考虑海拔高度对热设计准确度的影响。热仿真技术:了解热仿真的目的、要求,常用热仿真软件介绍。热设计的发展趋势:了解最新散热技术、了解新材料。5风路设计方法自然冷却的风路设计设计要点机柜的后门(面板)不须开通风口。底部或侧面不能漏风。应保证模块后端与机柜后面门之间有足够的空间。机柜上部的监控及配电不能阻塞风道,应保证上下具有大致相等的空间。对散热器采用直齿的结构,模块放在机柜机架上后,应保证散热器垂直放置,即齿槽应垂直于水平面。对散热器采用斜齿的结构,除每个模块机箱前面板应开通风口外,在机柜的前面板也应开通风口。6风路设计方法自然冷却的风路设计设计案例7风路设计方法自然冷却的风路设计典型的自然冷机柜风道结构形式监控模块交流配电单元整流模块进风口直流配电单元风道整流模块进风口交流配电单元监控模块直流配电单元8风路设计方法强迫冷却的风路设计设计要点如果发热分布均匀,元器件的间距应均匀,以使风均匀流过每一个发热源.如果发热分布不均匀,在发热量大的区域元器件应稀疏排列,而发热量小的区域元器件布局应稍密些,或加导流条,以使风能有效的流到关键发热器件。如果风扇同时冷却散热器及模块内部的其它发热器件,应在模块内部采用阻流方法,使大部分的风量流入散热器。进风口的结构设计原则:一方面尽量使其对气流的阻力最小,另一方面要考虑防尘,需综合考虑二者的影响。风道的设计原则风道尽可能短,缩短管道长度可以降低风道阻力;尽可能采用直的锥形风道,直管加工容易,局部阻力小;风道的截面尺寸和出口形状,风道的截面尺寸最好和风扇的出口一致,以避免因变换截面而增加阻力损失,截面形状可为园形,也可以是正方形或长方形;9风路设计方法强迫冷却的风路设计典型结构10风路设计方法强迫冷却的风路设计电源系统典型的风道结构-吹风方式交流配电单元直流配电单元直流配电单元交流配电单元11风路设计方法强迫冷却的风路设计电源系统典型的风道结构-抽风方式交流配电单元直流配电单元直流配电单元交流配电单元12热设计的基础理论自然对流换热大空间的自然对流换热Nu=C(Gr.Pr)n.定性温度:tm=(tf+tw)/2定型尺寸按及指数按下表选取表面形状及位置C、n值定型尺寸适用范围Gr.Pr流态Cn垂直平壁及垂直圆柱层流0.591月4日高度h104-109紊流0.11月3日109-1013水平圆柱层流1.020.148圆柱外径D10-2-1020.850.188102-1040.480.25104-107紊流0.1251月3日107-1012热面朝上或冷面朝下的水平壁层流0.541月4日矩形取两个边长2×104-8×106紊流0.151月3日的平均值,非规则8×108-1011热面朝下或冷面朝上的水平壁层流0.581月5日形状取面积与周长之比,105-1011紊流园盘取0.9d13热设计的基础理论自然对流换热有限空间的自然对流换热垂直封闭夹层的自然对流换热问题分为三种情况:(1)在夹层内冷热壁的两股流道边界层能够相互结合,形成环流;(2)夹层厚度δ与高度之比δ/h0.3时,冷热的自然对流边界层不会相互干扰,也不会出现环流,可按大空间自然对流换热计算方法分别计算冷热的自然对流换热;(3)冷热壁温差及厚度均较小,以厚度为定型尺寸的Gr=(Bg△tδ3)/υ32000时,通过夹层的热量可按纯导热过程计算。14热设计的基础理论自然对流换热有限空间的自然对流换热水平夹层的自然对流换热问题分为三种情况:(1)热面朝上,冷热面之间无流动发生,按导热计算;(2)热面朝下,对气体Gr.Pr1700,按导热计算;(3)有限空间的自然对流换热方程式:Nu=C(Gr.Pr)m(δ/h)n定型尺寸为厚度δ,定性温度为冷热壁面的平均温度Tm=(tw1+tw2)3.2×107(Gr.Pr)7000(Gr.Pr)3.2×1070.212(Gr.Pr)1/41700(Gr.Pr)70000.059(Gr.Pr)0.4水平夹层(热面在下)2×105(Gr.Pr)1.1×1070.073(Gr.Pr)1/3(δ/h)1/96000(Gr.Pr)2×1050.197(Gr.Pr)1/4(δ/h)1/9垂直夹层适用范围Nu准则方程式15热设计的基础理论流体受迫流动换热管内受迫流动换热管内受迫流动的特征表现为:流体流速、管子入口段及温度场等因素对换热的影响。入口段:流体从进入管口开始需经历一段距离后管两侧的边界层才能够在管中心汇合,这时管断面流速分布及流动状态才达到定型。这段距离称为入口段。入口段管内流动换热系数是不稳定的,所以计算平均对流换热系数应对入口段进行修正。在紊流时,如果管长与管内径之比L/d50则可忽略入口效应,实际上多属于此类情况。管内受迫层流换热准则式:Nu=0.15Re0.33Pr0.43Gr0.1(Pr/Prw)0.25管内受迫紊流换热准则式:twtfNu=0.023Re0.8Pr0.4.twtfNu=0.023Re0.8Pr0.316热设计的基础理论流体动力学基础流量与断面平均流速流量:单位时间内流过过流断面的流体数量。如数量以体积衡量称为体积流量Q;单位为m3/s(CFM);如数量用重量衡量称为重量流量G,单位为Kg/s。二者的关系为:G=γQ断面平均流速:由于流体的粘性,过流断面上各点的流速分布不均匀,根据流量相等原则所确定的均匀流速称为断面平均流速。单位m/s(CFM)V=Q/A湿周与水力半径湿周:过流断面上流体与固体壁面相接触的周界长度。用x表示,单位m。水力半径:总流过过流断面面积A与湿周x之比称为水力半径,应符号R表示,单位M。恒定流连续性方程对不可压缩流体:V1A1=V2A2.对可压缩流体:ρ1V1A1=ρ1V2A217热设计的基础理论流体动力学基础恒定流能量方程对理想流体:Z+p/γ+v2/2g=常数实际流体:由于粘性作为会引起流动阻力,流体阻力与流体流动方向相反作负功,使流体的总能量不断衰减,每个断面的Z+p/y+v2/2g≠常数,假设流体从断面1到断面2的能量损失为hw,则元流的能量方程式为:Z1+p1/γ+v12/2g=Z2+p2/γ+v22/2g+hw18热设计的基础理论流体动力学基础流体流动的阻力:由于流体的粘性和固体边界的影响,使流体在流动过程中受到阻力,这个阻力称为流动阻力,可分为沿程阻力和局部阻力两种。沿程阻力:在边界沿程不变的区域,流体沿全部流程的摩檫阻力。局部阻力:在边界急剧变化的区域,如断面突然扩大或突然缩小、弯头等局部位置,是流体的流体状态发生急剧变化而产生的流动阻力。层流、紊流与雷诺数层流:流体质点互不混杂,有规则的层流运动。Re=Vde/ν2300层流紊流:流体质点相互混杂,无规则的紊流运动。显然层流状态下只存在粘性引起的摩檫阻力,而紊流状态下除摩檫阻力外还存在由于质点相互碰撞、混杂所造成的惯性阻力,因此紊流的阻力较层流阻力大的多。Re=Vde/ν2300紊流19热设计的基础理论流体动力学基础管内层流沿程阻力计算(达西公式)hf=λ(L/de)(ρV2/2)λ-沿程阻力系数,λ=64/Re管内紊流沿程阻力计算hf=λ(L/de)(ρV2/2)λ=f(Re,ε/d),即紊流时沿程阻力系数不仅与雷诺数有关,还与相对粗糟度ε有关。尼古拉兹采用人工粗糟管进行试验得出了沿程阻力系数的经验公式:紊流光滑区:4000Re105,λ采用布拉修斯公式计算:λ=0.3164/Re0.2520热设计的基础理论流体动力学基础非园管道沿程阻力的计算引入当量水力半径后所有园管的计算方法与公式均可适用非园管,只需把园管直径换成当量水力直径。de=4A/x局部阻力hj=ξρV2/2ξ-局部阻力系数突然扩大:按小面积流速计算的局部阻力系数:ζ1=(1-A1/A2)按大面积流速计算的局部阻力系数:ζ2=(1-A2/A1)突然缩小:可从相关的资料中查阅经验值。21散热器的设计方法散热器冷却方式的判据材料热流密度q=∧(t1-t2)/d∧--表示材料导热系数t1--表示热表面的温度t1--表示冷表面的温度d--表示材料厚度热流密度大,初生坯壳增长太快,会增加振痕...3m/min,弯月面处的热流密度;普通结晶器2MMW/m2,热顶结晶器0.5MMW/m2。对通风条件较好的场合:散热器表面的热流密度小于0.039W/cm2,可采用自然风冷。对通风条件较恶劣的场合:散热器表面的热流密度小于0.024W/cm2,可采用自然风冷。散热器强迫风冷方式的判据对通风条件较好的场合,散热器表面的热流密度大于0.039W/cm2而小于0.078W/cm2,必须采用强迫风冷。对通风条件较恶劣的场合:散热器表面的热流密度大于0.024W/cm2而小于0.078W/cm2,必须采用强迫风冷。22散热器的设计方法散热器设计的步骤通常散热器的设计分为三步1:根据相关约束条件设计处轮廓图。2:根据散热器的相关设计准则对散热器齿厚、齿的形状、齿间距、基板厚度进行优化。3:进行校核计算。23散热器的设计方法自然冷却散热器的设计方法考虑到自然冷却时温度边界层较厚,如果齿间距太小,两个齿的热边界层易交叉,影响齿表面的对流,所以一般情况下,建议自然冷却的散热器齿间距大于12mm,如果散热器齿高低于10mm,可按齿间距≥1.2倍齿高来确定散热器的齿间距。自然冷却散热器表面的换热能力较弱,在散热齿表面增加波纹不会对自然对流效果产生太大的影响,所以建议散热齿表面不加波纹齿。自然对流的散热器表面一般采用发黑处理,以增大散热表面的辐射系数,强化辐射换热。由于自然对流达到热平衡的时间较长,所以自然对流散热器的基板及齿厚应足够,以抗击瞬时热负荷的冲击,建议大于5mm以上。24散热器的设计方法强迫冷却散热器的设计方法在散热器表面加波纹齿,波纹齿的深度一般应小于0.5mm。增加散热器的齿片数。目前国际上先进的挤压设备及工艺已能够达到23的高宽比,国内目前高宽比最大只能达到8。对能够提供足够的集中风冷的场合,建议采用低温真空钎焊成型的冷板,其齿间距最小可到2mm。采用针状齿的设计方式,增加流体的扰动,提高散热齿间的对流换热系数。当风速大于1m/s(200CFM)时,可完全忽略浮升力对表面换热的影响。25散热器的设计方法在一定冷却条件下,所需散热器的体积热阻大小的选取方法不同冷却条件下对应的散热器体积热阻50-805.0m/s(1000CFM)80-1502.5m/s(500C
本文标题:电子产品的热设计方法
链接地址:https://www.777doc.com/doc-5318367 .html