您好,欢迎访问三七文档
浅谈中值滤波1.中值滤波的现状在数字信号处理和数字图像处理的早期研究中,线性滤波是主要的处理手段。线性滤波简单的数学表达式以及某些理想特性使其很容易设计和实现。然而,当信号中含有非叠加性噪声时,例如非线性引起的噪声或非高斯噪声等,线性滤波的处理效果就很难令人满意。在处理图像时,线性滤波将破坏边缘,而且不能有效滤除脉冲噪声。为了克服线性滤波方法的局限性,研究非线性滤波的方法为数字信号处理重要课题之一。非线性滤波基于对输入信号序列的一种非线性映射关系,常可把某一特定的噪声近似映射为零而保留信号的重要特征,因而可以在一定程度上克服线性滤波的不足。1971年著名学者J.W.Tukey在他的开拓性论文中提出了中值滤波的概念并用作时间序列平滑。中值滤波一出现就因其具有对尖脉冲的良好抑制能力,在平滑加性噪声时能保持信号的边缘特征等优点而备受瞩目。常用的中值滤波是非线性滤波的代表,由于经典的中值滤波算法在滤除噪声的同时会使信号中重要的细节信息受损,因此,许多改进的中值滤波算法相继被提出。2.中值滤波在数据处理中我们经常使用的是滑动中值滤波,即取定中值滤波的跨度N(一般N为奇数),在数据序列中顺次取得N个数据,然后将该数据列的中值作为中心位置的值输出以形成新的数据序列,在滤波中应将原数据序列的两个边界各补充(N-1)/2(N为奇数时)个等于边界的点以使滤波后的新数据序列长度与原始的数据序列长度一致。2.1一般中值滤波2.1.1一般中值滤波的基本原理设有一个序列:x1,x2,x3,x4,x5,将它们按照绝对值大小重新排列此序列x3,x5,x2,x4,x1重排以后的中值是x2,此值就作为滤波的输出。显然,x2不能表示成输入数据和滤波系数的褶积的线性组合。其主要特点有:(1)一般中值滤波绝对阻止噪声峰值,因为中值滤波只取中位数,绝对不会取异常数。例如有一组数(x1,x2,x3,x4,x5)正常数−a≤xn≤a,n=2,3,4,5异常数x1aa表示一个数,将以上数组自小到大排列后为(x3,x5,x2,x4,x1)取中位数x2,决不会取异常数x1。(2)一般中值滤波是低通滤波器,中值滤波取中值为序列的输出,可以看作是对数据序列进行局部平滑,这种局部平滑实质就是低通滤波。(3)一般中值滤波不改变阶越函数在空间、时间上的位置,这一性质对于信号处理中的保护边缘有着重要的作用。(4)当中值滤波的滤波窗口足够长时,有限宽度的三角波和矩形波可以被完全平滑。(5)中值滤波由于没有统计效应,对随机出现的小的振幅值有时不能完全平滑,所以通常信号在中值滤波处理以后需要再进行带通滤波。2.1.2一般中值滤波(MF)的数学基础中值滤波对数字序列有平滑作用,平滑也就是数据逼近,这样则存在误差,如何利用误差最小来确定平滑参数,一般常见的有两种准则:(1)使误差的平方和达到最小;(2)使误差的绝对值和达到最小。平均值平滑的数学原理应用准则(1),即符合误差的平方和最小。中值滤波则是利用准则(2)来实现对数据序列的平滑。设x是n个数据序列的中位数,xi表示一组序列。x与xi之差的绝对值和为:inixxQ1(3.1.1)要使Q最小,则0xQ(3.1.2)即niininiiiixxSignxxxxxxxQ11120)()(x式中:Sign——符号函数。当xix时,Sign为负;当xix时,Sign为正;当xi=x时,Sign为零;这样在选择x时,使得在n个数中,有n/2个xi大于x,同样有n/2个xi小于x,中间的xi即为x;如果n为偶数,则取中间的两个xi的平均值为x。2.2加权中值滤波2.2.1加权中值滤波(WM)的基本原理由上可以看出通过改变加权系数,完全可以改变中值滤波的性质,来达到我们的要求。2.3一维中值滤波对信号作用的结果分析由于中值滤波是一种特殊的非线性滤波手段,它对脉冲的响应为零,(在一个输入上施加一个脉冲函数引起的时间响应。)所以在傅氏域没有“真正的”振幅谱和相位谱。我们只能通过它对已知信号及其频谱特征的响应来分析其各种滤波特性。虽然中值滤波的理论比较完善,但是由于多数情况处理的信号是对称信号,所以并没有人注意到中值滤波对信号相位的影响。2.3.1一般中值滤波对对称信号相位的影响(1)在频谱图中,一般中值滤波引入了假高频成分,并且在子波的频带范围内,滤波后子波的主要频带向低频方向移动,此特点在数据处理时应该着重注意,要根据数据处理时的具体要求来判断,同时也成为选择滤波长度的一个条件。(2)经过一般中值滤波后对称信号的相位不发生移动,这使得我们在处理由对称信号(例如雷克子波、奥姆斯比子波等)作为子波的合成地震记录时,不需要考虑相移问题。但由此就得出结论说中值滤波处理后的所有类型的信号的相位都不发生移动则是片面甚至错误的。2.3.2一般中值滤波对非对称信号相位的影响一般中值滤波对非对称信号的处理效果不同于处理对称信号,如果用处理对称信号的规律来对待非对称信号则往往不能达到预期的效果。对应滤波后的频谱同样向低频方向移动,但假高频现象却并不如对称信号滤波后明显。处理非对称信号的同时必须注意选择的滤波点数是否使相位的改变在要求的范围内。从滤波后和滤波前的最大振幅平方比来看滤波前后的能量变化,发现在同等情况下,一般中值滤波对非对称信号的衰减能力大于对对称信号的衰减。2.3.3加权中值滤波对对称信号相位的影响(1)在频谱图中,加权中值滤波也引入了假高频成分;并且滤波后的子波的主要频带向低频方向移动,说明了加权中值滤波的低通滤波特性。(2)同样加权中值滤波对对称信号的相位不产生影响。2.3.4加权中值滤波对非对称信号相位的影响当滤波长度大于一定的子波宽度时,波形已经失去了原有的形态,但是在波形失去原有形态之前,经过加权中值滤波后的子波表现出较好的分辨率特性;在频谱上加权中值滤波仍然表现出低通特性;信号的相位也因滤波而产生了畸变。2.3.5一般、加权中值滤波对不同信号作用的比较一般中值滤波和加权中值滤波对于同一种信号表现出相似的特性:二者在处理对称信号时,都起到了衰减的作用,并且对信号的相位都不产生影响,同时使信号的频谱中掺入了假高频成分,还表现出了中值滤波的低通特性;在处理非对称信号时,除了对信号产生衰减作用外,还使信号的相位发生了畸变。尽管一般和加权中值滤波有相似之处,但是它们还是存在着较大的差异:在处理对称信号时,一般和加权中值滤波分别对同一信号进行滤波以后,信号的峰值很接近,但是加权中值滤波比一般中值滤波更有利于提高信号的分辨率,在频谱上加权中值滤波比一般中值滤波表现出更加严重的假高频现象。在处理非对称信号时,加权中值滤波比一般中值滤波表现出的更好的提高分辨率的性质。而在相位谱分析中,尽管加权和一般中值滤波都使信号的相位发生改变,但是在滤波长度较小的情况下,经过一般中值滤波得到的信号的相位曲线虽然已经发生改变,但是仍然与原始信号的相位曲线有相同的趋势,并没有偏离太多;而此时即使在滤波长度较小的情况下,经过加权中值滤波得到的信号的相位曲线已经变得不可辨认了。经过以上的讨论,我们可以认识到在实际地震资料的处理中,应用中值滤波除了应该考虑信噪比和分辨率以外,更加不容忽视的就是信号的相移问题,这对于资料的可信度起着至关重要的作用。由于在实际中,经常用到的一维中值滤波是不加权的,所以常常把一维不加权中值滤波简说成一般中值滤波,但是随着对处理手段的进一步要求,加权中值滤波的地位日益突出,并且毕竟不加权的情况只是一种特殊的加权中值滤波,所以一般中值滤波的概念也应该扩充为加权中值滤波。通过对两种不同加权中值滤波(一般、加实数权)的讨论,总结出了一些关于一维中值滤波方面的经验:(1)通过不同权系数的选取,中值滤波表现出不同的特性,我们可以根据对实际情况的分析来选取不同的权系数以适应各自的需要。(2)本次只是选取了两种特殊的权系数来分析,而在实际中存在着更多的权系数的选取方法,但是不管权系数的形式如何,都可以仿照本文的方法加以研究。(3)虽然中值滤波可以满足一定的要求,但是我们同时也应该注意到它们存在的问题:①中值滤波会引起信号形态上的畸变,而且畸变程度和滤波长度有关;②中值滤波会引入假高频,因此信号在经过中值滤波后可以根据情况做一次低通滤波;③中值滤波对非对称信号进行处理时,会引起相位畸变,因此在使用中值滤波之前应该试验相位畸变是否在处理的允许的范围内;④虽然选取适当的权系数后,加权中值滤波可以使信号提高分辨率,但是同时带来“小台阶”效应,因此经过加权中值滤波处理后的信号推荐做一次平滑处理。由于中值滤波是一类特殊的滤波方法,因此我们利用它进行信号处理时应该格外注意。为了得到预期的效果,处理之前做一下试验以确定最佳的滤波长度是非常必要的。3中值滤波在地震资料处理中的应用3.1中值滤波在井间地震资料处理中的应用中值滤波是一种简便有效且信号失真较小的信号处理方法。在不同的道集域下,井间地震资料中的直达波、一次反射波和多次反射波在相邻道间的时差具有不同的表现形式,利用这一特点,应用中值滤波在不同道集域内对井间地震资料进行滤波处理,可以得到很好的效果。对于井间地震资料,我们所需要的有效反射波是来自于激发点与接收点下方的一次反射波(上行反射)和来自于激发点与接收点上方的一次反射波(下行反射),其它波均视为相关干扰或无效信息。中值滤波是以正常时差不同为基础的多道滤波技术,在井间地震特殊的观测系统中,中值滤波可以发挥其自身的优点。通过对井间地震不同道集域下道间时差的分析可以知道,仅运用中值滤波即可达到较好的波场分离效果。为了验证不同道集域下中值滤波对数据处理的效果,进行直达波与多次波的衰减、一次反射波的增强以及上下行波场的分离。3.1.1直达波和多次波的衰减首先对数据进行带通滤波,消除有效频带之外的噪音干扰,将共炮点道集重排为共偏移距道集。在共偏移距道集下,根据(1)式和(3)式可知,直达波和多次波除了受速度影响外,其相邻道间时差为0,通过共偏移距道集对初至时间拉平排齐,在一定程度上消除了速度的影响,然后选择适当的时窗参数,采用中值滤波消除相邻道时差为0的波组记录,使直达波和多次反射波得到衰减。3.1.2反射波的增强把衰减了直达波和多次波的数据体重新抽道组成共中心点道集,对于共中心点道集,由于△s=-△g,根据(2)式可知,一次反射波在不受速度影响的情况下其相邻道间的时差为0,通过共中心点道集对反射波时间拉平排齐,消除速度的影响,再次做中值滤波处理,本次中值滤波是为了保留相邻道时差为0的波组记录,而相邻道时差不为0的波组记录将被减弱,因而一次反射波同相轴得以增强,而其它波场(如直达波和多次波)再次得到衰减(图4,虚线圈)。3.1.3上、下行波场的分离首先对上行反射波进行拉平(图5中的②),然后通过中值滤波使上行反射增强而下行反射减弱(图5中的③),最后返回原始时间剖面得到上行反射波场(图5中的④);反之,得到下行反射波场(图5中的⑤)。图6为通过中值滤波最终获得的上行和下行反射波场。在波场分离中,对于资料相对较好的地震数据,仅应用中值滤波即可达到较好的波场分离效果;对于信噪比较低的资料,可以用中值滤波技术使资料的有效波场加强,并得到上、下行反射信息,然后再利用中值滤波进行波场分离。井间观测系统所具有的特殊性,使得同一种地震波在不同道集域下的时差表现形式不同,因此可以在井间地震处理中利用中值滤波技术实现直达波和多次波的衰减,反射波的增强以及上、下行反射波的分离。同时,由于中值滤波处理对地震原始资料畸变程度较小,因此可以提高井间地震资料反射成像的质量。3.2多道中值滤波在分离VSP波场中的应用?多道中值滤波处理流程图4.中值滤波特点中值滤波是一个非线性过程,最大优点是算法简单且去噪效果明显。中值滤波具有如下特点:(1)中值滤波绝对阻止噪声峰值。(2)中值滤波不改变阶跃函数在空间、时间上的位置。(3)消除尖峰波以及增强部分有效波;(4)对野外原始地震资料信息的畸变和负面影响较小等优点。(5)中值滤波平滑三角波,其平滑作用随着中值滤波长度N的增加
本文标题:浅谈-中值滤波
链接地址:https://www.777doc.com/doc-5319200 .html