您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中数学必修三、四复习
1必修3数学知识点第一章:算法1、算法三种语言:自然语言、流程图、程序语言;2、流程图中的图框:起止框、输入输出框、处理框、判断框、流程线等规范表示方法;3、算法的三种基本结构:顺序结构、条件结构、循环结构当型循环结构直到型循环结构⑴顺序结构示意图:(图1)⑵条件结构示意图:①IF-THEN-ELSE格式:(图2)②IF-THEN格式:(图3)⑶循环结构示意图:①当型(WHILE型)循环结构示意图:语句n+1语句n满足条件?语句1语句2是否满足条件?语句是否满足条件?循环体是否2(图4)②直到型(UNTIL型)循环结构示意图:(图5)4、基本算法语句:①输入语句的一般格式:INPUT“提示内容”;变量②输出语句的一般格式:PRINT“提示内容”;表达式③赋值语句的一般格式:变量=表达式(“=”有时也用“←”).④条件语句的一般格式有两种:IF—THEN—ELSE语句的一般格式为:IF—THEN语句的一般格式为:⑤循环语句的一般格式是两种:当型循环(WHILE)语句的一般格式:IF条件THEN语句1ELSE语句2ENDIFIF条件THEN语句ENDIF(图3)(图2)WHILE条件循环体WEND满足条件?循环体是否3直到型循环(UNTIL)语句的一般格式:第二章:统计1、抽样方法:①简单随机抽样(总体个数较少)②系统抽样(总体个数较多)③分层抽样(总体中差异明显)注意:在N个个体的总体中抽取出n个个体组成样本,每个个体被抽到的机会(概率)均为Nn。2、总体分布的估计:⑴一表二图:①频率分布表——数据详实②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势注:总体分布的密度曲线与横轴围成的面积为1。⑵茎叶图:①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等。②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。3、总体特征数的估计:⑴平均数:nxxxxxn321;取值为nxxx,,,21的频率分别为nppp,,,21,则其平均数为nnpxpxpx2211;注意:频率分布表计算平均数要取组中值。⑵方差与标准差:一组样本数据nxxx,,,21方差:212)(1niixxns;标准差:21)(1niixxns注:方差与标准差越小,说明样本数据越稳定。平均数反映数据总体水平;方差与标准差反映数据的稳定水平。⑶线性回归方程①变量之间的两类关系:函数关系与相关关系;②制作散点图,判断线性相关关系③线性回归方程:abxy(最小二乘法)(图4)DO循环体LOOPUNTIL条件(图5)41221niiiniixynxybxnxaybx注意:线性回归直线经过定点),(yx。第三章:概率1、随机事件及其概率:⑴事件:试验的每一种可能的结果,用大写英文字母表示;⑵必然事件、不可能事件、随机事件的特点;⑶随机事件A的概率:1)(0,)(APnmAP.2、古典概型:⑴基本事件:一次试验中可能出现的每一个基本结果;⑵古典概型的特点:①所有的基本事件只有有限个;②每个基本事件都是等可能发生。⑶古典概型概率计算公式:一次试验的等可能基本事件共有n个,事件A包含了其中的m个基本事件,则事件A发生的概率nmAP)(.3、几何概型:⑴几何概型的特点:①所有的基本事件是无限个;②每个基本事件都是等可能发生。⑵几何概型概率计算公式:的测度的测度DdAP)(;其中测度根据题目确定,一般为线段、角度、面积、体积等。4、互斥事件:⑴不可能同时发生的两个事件称为互斥事件;⑵如果事件nAAA,,,21任意两个都是互斥事件,则称事件nAAA,,,21彼此互斥。⑶如果事件A,B互斥,那么事件A+B发生的概率,等于事件A,B发生的概率的和,即:)()()(BPAPBAP⑷如果事件nAAA,,,21彼此互斥,则有:)()()()(2121nnAPAPAPAAAP⑸对立事件:两个互斥事件中必有一个要发生,则称这两个事件为对立事件。①事件A的对立事件记作A)(1)(,1)()(APAPAPAP②对立事件一定是互斥事件,互斥事件未必是对立事件。必修4数学知识点5复习建议:我听到的会忘记,我看到的能记住,我做过的才真正明白。每一章节的复习首先应明确一些基本的概念,最好是在深刻理解其本质后,能够脱口而出。然后就是每一章节和的你标记的一些经典题目。第一章:三角函数§1.1.1、任意角1、正角、负角、零角、象限角的概念.2、与角终边相同的角的集合:Zkk,2.§1.1.2、弧度制1、把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、rl.3、弧长公式:RRnl180.4、扇形面积公式:lRRnS213602.§1.2.1、任意角的三角函数1、设是一个任意角,它的终边与单位圆交于点yxP,,那么:xyxytan,cos,sin2、设点,Axy为角终边上任意一点,那么:(设22rxy)sinyr,cosxr,tanyx,cotxy3、sin,cos,tan在四个象限的符号和三角函数线的画法.正弦线:MP;余弦线:OM;正切线:AT5、特殊角0°,30°,45°,60°,90°,180°,270等的三角函数值.064322334322sinTMAOPxy6costan§1.2.2、同角三角函数的基本关系式1、平方关系:1cossin22.2、商数关系:cossintan.§1.3、三角函数的诱导公式(概括为“奇变偶不变,符号看象限”Zk)1、诱导公式一:.tan2tan,cos2cos,sin2sinkkk(其中:Zk)2、诱导公式二:.tantan,coscos,sinsin3、诱导公式三:.tantan,coscos,sinsin4、诱导公式四:.tantan,coscos,sinsin5、诱导公式五:.sin2cos,cos2sin6、诱导公式六:.sin2cos,cos2sin§1.4.1、正弦、余弦函数的图象和性质本章就是三个图像,记住正弦、余弦、正切的图像,其基本性质定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性.都可以从图像中观察得知特别注意正切函数的周期这一性质快速化简,tan(x+k)=tan(x),71、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性.3、会用五点法作图.sinyx在[0,2]x上的五个关键点为:30010-12022(,)(,,)(,,)(,,)(,,).§1.4.3、正切函数的图象与性质1、记住正切函数的图象:y=tanx322-32--2oyx2、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.周期函数定义:对于函数xf,如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有xfTxf,那么函数xf就叫做周期函数,非零常数T叫做这个函数的周期.图表归纳:正弦、余弦、正切函数的图像及其性质xysinxycosxytan图象定义域RR},2|{Zkkxx值域[-1,1][-1,1]R1-1y=cosx-32-52-727252322-2-4-3-2432-oyx1-1y=sinx-32-52-727252322-2-4-3-2432-oyx特别注意此函数的定义域8最值maxmin2,122,12xkkZyxkkZy时,时,maxmin2,12,1xkkZyxkkZy时,时,无周期性2T2TT奇偶性奇偶奇单调性Zk在[2,2]22kk上单调递增在3[2,2]22kk上单调递减在[2,2]kk上单调递增在[2,2]kk上单调递减在(,)22kk上单调递增对称性Zk对称轴方程:2xk对称中心(,0)k对称轴方程:xk对称中心(,0)2k无对称轴对称中心,0)(2k§1.5、函数xAysin的图象1、对于函数:sin0,0yAxBA有:振幅A,周期2T,初相,相位x,频率21Tf.2、能够讲出函数xysin的图象与sinyAxB的图象之间的平移伸缩变换关系.本质:三大函数.f(x)f(x+ɑ)h(x)h(bx)g(x)cg(x)3、三角函数的周期,对称轴和对称中心函数sin()yx,x∈R及函数cos()yx,x∈R(A,,为常数,且A≠0)的周期2||T;函数tan()yx,,2xkkZ(A,ω,为常数,且A≠0)的周期||T.对于sin()yAx和cos()yAx来说,对称中心与零点相联系,对称轴与最值点联系.求函数sin()yAx图像的对称轴与对称中心,只需令()2xkkZ与()xkkZ解出x即可.余弦函数可与正弦函数类比可得.4、由图像确定三角函数的解析式利用图像特征:maxmin2yyA,maxmin2yyB.要根据周期来求,要用图像的关键点来求.§1.6、三角函数模型的简单应用1、要求熟悉课本例题.第三章、三角恒等变换§3.1.1、两角差的余弦公式9公式逆用时注意等式两边的符号sinsincoscos)-cos(其余公式都可由这一公式推导而得,注意公式间的联系,有助于我们记忆!§3.1.2、两角和与差的正弦、余弦、正切公式1、sincoscossinsin2、sincoscossinsin3、sinsincoscoscos4、sinsincoscoscos5、tantan1tantantan.6、tantan1tantantan.§3.1.3、二倍角的正弦、余弦、正切公式1、cossin22sin,变形:12sincossin2.2、22sincos2cos1cos222sin21.变形如下:升幂公式:221cos22cos1cos22sin降幂公式:221cos(1cos2)21sin(1cos2)23、2tan1tan22tan.4、sin21cos2tan1cos2sin2§3.2、简单的三角恒等变换1、注意正切化弦、平方降次.2、化一公式)sin(cossin22xbaxbxay(其中辅助角所在象限由点(,)ab的象限决定,tanba).10三角形法则(首尾相接)平行四边形法则(起点相同,连对角)ABCBCA第二章:平面向量§2.1.1、向量的物理背景与概念1、了解四种常见向量:力、位移、速度、加速度.2、既有大小又有方向的量叫做向量.§2.1.2、向量的几何表示1、带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、向量AB的大小,也就是向量AB的长度(或称模),记作AB;长度为零的向量叫做零向量;长度等于1个单位的向量叫做单位向量.3、方向相同或相反的非零向
本文标题:高中数学必修三、四复习
链接地址:https://www.777doc.com/doc-5349121 .html