您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 3.4整式的加减第三课时去括号法则
3.4整式的加减第三课时去括号法则讲解点1:去括号法则精讲:法则:括号前面是“+”号,把括号和它前面的“+”号去掉后,括号里的各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉后,括号里的各项都要改变符号;例如:a+(b+c)=a+b+ca-(b+c)=a-b-c对去括号法则的理解及注意事项如下:(1)去括号的依据是乘法分配律;(2)注意法则中“都”字,变号时,各项都要变,不是只变第一项;若不变号,各项都不变号;(3)有多重括号时,一般先去小括号,再去中括号,最后去大括号。每去掉一层括号,如果有同类项应随时合并,为下一步运算简便化,减少差错。“负”变“正”不变!![典例]1.填空:(1)(a-b)+(-c-d)=;(2)(a-b)-(-c-d)=;(3)-(a-b)+(-c-d)=;(4)-(a-b)-(-c-d)=;评析:应用去括号法则时要注意,若括号前没有符号,则按照“+”号处理,去掉括号,括号各项都不变号。特别注意括号前是“-”号的情况,往往忽略变号,或不全变(如只变第一项,后面的就不变)a-b-c-da-b+c+d-a+b-c-d-a+b+c+d2.判断下列去括号是否正确(正确的打“∨”,错误的打“×”)(1)a-(b-c)=a-b-c()(2)-(a-b+c)=-a+b-c()(3)c+2(a-b)=c+2a-b()∨××3.化简:(1)x-3(1-2x+x2)+2(-2+3x-x2)评析:注意去多重括号的顺序。有同类项的要合并。解:(1)原式=x-3+6x-3x2-4+6x-2x2=(-3x2-2x2)+(x+6x+6x)+(-3-4)=-5x2+13x-7(2)原式=3x2-5xy+{-x2-[-3xy+2x2-2xy+y2]}=3x2-5xy+{-x2+3xy-2x2+2xy-y2}=3x2-5xy-x2+3xy-2x2+2xy-y2=(3x2-x2-2x2)+(-5xy+3xy+2xy)-y2=-y2(2)(3x2-5xy)+{-x2-[-3xy+2(x2-xy)+y2]}讲解点2:去括号法则的应用精讲:在有关多项式的化简及求值的题目中,只要带有括号,就要用到去括号法则进行化简。这类题目的思路是:去括号—合并同类项—代入计算。正确应用去括号法则是关键。[典例]化简求值:(基本题型)(2x3-xyz)-2(x3-y3+xyz)+(xyz-2y3),其中x=1,y=2,z=-3。评析:此类题目的基本思路是:先化简—即去括号合并同类项,再求值—用数字代替相应的字母,进行有理数的运算。解:原式=2x3-xyz-2x3+2y3-2xyz+xyz-2y3=(2x3-2x3)+(2y3-2y3)+(-2xyz-xyz+xyz)=-2xyz当x=1,y=2,z=-3时,原式=-2×1×2×(-3)=12[典例]已知(x+1)2+|y-1|=0,求下列式子的值。2(xy-5xy2)-(3xy2-xy)解:根据非负数的性质,有x+1=0且y-1=0,∴x=-1,y=1。则2(xy-5xy2)-(3xy2-xy)=2xy-10xy2-3xy2+xy=3xy-13xy2当x=-1,y=1时,原式=3×(-1)×1-13×(-1)×12=-3+13=10评析:根据已知条件,由非负数的性质,先求出x、y的值,这是求值的关键,然后代入化简后的代数式,进行求值。思考:已知A=3a2+2b2,B=a2-2a-b2,求当(b+4)2+|a-3|=0时,A-B的值。[典例]计算2a2b-3ab2+2(a2b-ab2)评析:去括号时,要按照乘法分配律把括号前面的数和符号一同与括号内的每一项相乘,而不是只乘第一项。错解:原式=2a2b-3ab2+2a2b-ab2=2a2b+2a2b-3ab2-ab2=4a2b-4ab2正解:原式=2a2b-3ab2+2a2b-2ab2=2a2b+2a2b-3ab2-2ab2=4a2b-5ab2[典例]化简18x2y3-[6xy2-(xy2-12x2y3)]解:原式=18x2y3-6xy2+(xy2-12x2y3)=18x2y3-6xy2+xy2-12x2y3=(18x2y3-12x2y3)+(-6xy2+xy2)=6x2y3-5xy2评析:若先去中括号,则小括号前的“-”变为“+”号,再去小括号时,括号内各项不用变号,这样就减少;某些项的反复变号,不易错了。注意:实际上,如果括号前是“+”号,就可以“直接”去掉括号,而不必担心符号问题了。小结1、去括号法则2、去括号法则的应用。作业
本文标题:3.4整式的加减第三课时去括号法则
链接地址:https://www.777doc.com/doc-5350175 .html