您好,欢迎访问三七文档
高考物理压轴题汇编1988N个长度逐个增大的金属圆筒和一个靶,它们沿轴线排列成一串,如图所示(图中只画出了六个圆筒,作为示意).各筒和靶相间地连接到频率为υ、最大电压值为U的正弦交流电源的两端.整个装置放在高真空容器中.圆筒的两底面中心开有小孔.现有一电量为q、质量为m的正离子沿轴线射入圆筒,并将在圆筒间及圆筒与靶间的缝隙处受到电场力的作用而加速(设圆筒内部没有电场).缝隙的宽度很小,离子穿过缝隙的时间可以不计.已知离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差V1-V2=-U.为使打到靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶上的离子的能量.为使正离子获得最大能量,要求离子每次穿越缝隙时,前一个圆筒的电势比后一个圆筒的电势高U,这就要求离子穿过每个圆筒的时间都恰好等于交流电的半个周期.由于圆筒内无电场,离子在筒内做匀速运动.设vn为离子在第n个圆筒内的速度,则有将(3)代入(2),得第n个圆筒的长度应满足的条件为:n=1,2,3……N.打到靶上的离子的能量为:评分标准:本题共9分.列出(1)式给2分;列出(2)式给3分;得出(4)式再给2分;得出(5)式给2分.1991在光滑的水平轨道上有两个半径都是r的小球A和B,质量分别为m和2m,当两球心间的距离大于l(l比2r大得多)时,两球之间无相互作用力:当两球心间的距离等于或小于l时,两球间存在相互作用的恒定斥力F.设A球从远离B球处以速度v0沿两球连心线向原来静止的B球运动,如图所示.欲使两球不发生接触,v0必须满足什么条件?解一:A球向B球接近至A、B间的距离小于l之后,A球的速度逐步减小,B球从静止开始加速运动,两球间的距离逐步减小.当A、B的速度相等时,两球间的距离最小.若此距离大于2r,则两球就不会接触.所以不接触的条件是v1=v2①l+s2-s12r②其中v1、v2为当两球间距离最小时A、B两球的速度;s1、s2为两球间距离从l变至最小的过程中,A、B两球通过的路程.由牛顿定律得A球在减速运动而B球作加速运动的过程中,A、B两球的加速度大小为③设v0为A球的初速度,则由匀加速运动公式得联立解得⑥解二:A球向B球接近至A、B间的距离小于l之后,A球的速度逐步减小,B球从静止开始加速运动,两球间的距离逐步减小.当A、B的速度相等时,两球间的距离最小.若此距离大于2r,则两球就不会接触.所以不接触的条件是v1=v2①l+s2-s12r②其中v1、v2为当两球间距离最小时A、B两球的速度;s1、s2为两球间距离从l变至最小的过程中,A、B两球通过的路程.设v0为A球的初速度,则由动量守恒定律得mv0=mv1+2mv2③由动能定理得联立解得⑥评分标准:全题共8分.得出①式给1分.得出②式给2分.若②式中写成≥的也给这2分.在写出①、②两式的条件下,能写出③、④、⑤式,每式各得1分.如只写出③、④、⑤式,不给这3分.得出结果⑥再给2分.若⑥式中写成≤的也给这2分.1992如图所示,一质量为M、长为l的长方形木板B放在光滑的水平地面上,在其右端放一质量为m的小木块A,m〈M。现以地面为参照系,给A和B以大小相等、方向相反的初速度(如图),使A开始向左运动、B开始向右运动,但最后A刚好没有滑离L板。以地面为参照系。(1)若已知A和B的初速度大小为v0,求它们最后的速度的大小和方向。(2)若初速度的大小未知,求小木块A向左运动到达的最远处(从地面上看)离出发点的距离。解:(1)A刚好没有滑离B板,表示当A滑到B板的最左端时,A、B具有相同的速度。设此速度为V,A和B的初速度的大小为v0,则由动量守恒可得:Mv0-mv0=(M+m)V解得:,方向向右①(2)A在B板的右端时初速度向左,而到达B板左端时的末速度向右,可见A在运动过程中必经历向左作减速运动直到速度为零,再向右作加速运动直到速度为V的两个阶段。设l1为A开始运动到速度变为零过程中向左运动的路程,l2为A从速度为零增加到速度为V的过程中向右运动的路程,L为A从开始运动到刚到达B的最左端的过程中B运动的路程,如图所示。设A与B之间的滑动摩擦力为f,则由功能关系可知:对于B②对于A③④由几何关系L+(ι1-ι2)=ι⑤由①、②、③、④、⑤式解得⑥评分标准:本题8分(1)2分。末速度的大小和方向各占1分。(2)6分。其中关于B的运动关系式(例如②式)占1分;关于A的运动关系式(例如③、④两式)占3分,只要有错,就不给这3分;几何关系(例如⑤式)占1分;求出正确结果⑥,占1分。用其它方法求解,正确的,可参考上述评分标准进行评分。如考生若直接写出②、③、④、⑤的合并式则此式可给2分,再写出③式再给3分;最后结果正确再给1分。3、(93’)一平板车,质量M=100千克,停在水平路面上,车身的平板离地面的高度h=1.25米,一质量m=50千克的小物块置于车的平板上,它到车尾端的距离b=1.00米,与车板间的滑动摩擦系数μ=0.20,如图所示。今对平板车施一水平方向的恒力,使车向前行驶,结果物块从车板上滑落。物块刚离开车板的时刻,车向前行驶的距离s0=2.0米。求物块落地时,落地点到车尾的水平距离s。不计路面与平板车间以及轮轴之间的摩擦。取g=10米/秒2。解法一:设作用于平板车的水平恒力为F,物块与车板间的摩擦力为f,自车启动至物块开始离开车板经历的时间为t,物块开始离开车板时的速度为v,车的速度为V,则有(F-f)s0=(1/2)MV2①f(s0-b)=(1/2)mv2②(F-f)t=MV③ft=mv④f=μmg⑤由①、②得⑥由③、④式得(F-f)/f=(MV)/(mv)⑦由②、⑤式得=2米/秒由⑥、⑦式得V=s0/(s0-b)v=[2/(2-1)]×2=4米/秒由①式得物块离开车板后作平抛运动,其水平速度v,设经历的时间为t1,所经过的水平距离为s1,则有s1=vt1⑧h=(1/2)gt12⑨由⑨式得s1=2×0.5=1米物块离开平板车后,若车的加速度为a则a=F/M=500/100=5米/秒2车运动的距离于是s=s2-s1=2.6-1=1.6米评分标准:全题8分正确求得物块开始离开车板时刻的物块速度v给1分,车的速度V给2分;求得作用于车的恒力F再给1分。正确求得物块离开车板后平板车的加速度给1分。正确分析物块离开车板后的运动,并求得有关结果,正确求出物块下落过程中车的运动距离s2并由此求s的正确数值,共给3分。最后结果有错,不给这3分。解法二:设作用于平板车的水平恒力为F,物块与车板间的摩擦力为f,自车启动至物块离开车板经历的时间为t,在这过程中,车的加速度为a1,物块的加速度为a2。则有F-f=Ma1①f=ma2②f=μmg③以及s0=(1/2)a1t12④s0-b=(1/2)a1t12⑤由②、③两式得a2=μg=0.2×10=2米/秒2由④、⑤两式得由①、③两式得F=μmg+Ma1=0.2×50×10+100×4=500牛顿物块开始离开车板时刻,物块和车的速度分别为v和V,则物块离车板后作平抛运动,其水平速度为v,所经历的时间为t1,走过的水平距离为s1,则有s1=vt1⑥h=(1/2)gt12⑦解之得:s1=vt1=2×0.5=1米在这段时间内车的加速度a=F/M=500/100=5米/秒2车运动的距离s=s2-s1=2.6-1=1.6米评分标准:全题8分正确求得物块离开车板前,物块和车的加速度a1、a2,占2分,求得物块开始离开车板时刻的速度v和此时车的速度V占1分,求得作用于车的恒力F占1分。正确求得物块离开车板后,车的加速度a占1分。正确分析物块离开车板后物块的运动并求得有关结果,正确求得物块下落过程中车的运动距离,并由此求得s的正确结果,共占3分。最后结果错误,不给这3分。1994如图19-19所示,一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域。为了使该质点能从x轴上的b点以垂直于Ox轴的速度v射出,可在适当的地方加一个垂直于xy平面、磁感应强度为B的匀强磁场。若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径.重力忽略不计。解:质点在磁场中作半径为R的圆周运动,qvB=(Mv2)/R,得R=(MV)/(qB)根据题意,质点在磁场区域中的轨道是半径等于R的圆上的1/4圆周,这段圆弧应与入射方向的速度、出射方向的速度相切。过a点作平行于x轴的直线,过b点作平行于y轴的直线,则与这两直线均相距R的O′点就是圆周的圆心。质点在磁场区域中的轨道就是以O′为圆心、R为半径的圆(图中虚线圆)上的圆弧MN,M点和N点应在所求圆形磁场区域的边界上。在通过M、N两点的不同的圆周中,最小的一个是以MN连线为直径的圆周。所以本题所求的圆形磁场区域的最小半径为:所求磁场区域如图中实线圆所示。1995如图15所示,一排人站在沿x轴的水平轨道旁,原点O两侧的人的序号都记为n(n=1,2,3…).每人只有一个沙袋,x0一侧的每个沙袋质量为m=14千克,x0一侧的每个沙袋质量m′=10千克.一质量为M=48千克的小车以某初速度从原点出发向正x方向滑行.不计轨道阻力.当车每经过一人身旁时,此人就把沙袋以水平速度u朝与车速相反的方向沿车面扔到车上,u的大小等于扔此袋之前的瞬间车速大小的2n倍.(n是此人的序号数)(1)空车出发后,车上堆积了几个沙袋时车就反向滑行?(2)车上最终有大小沙袋共多少个?解:(1)在小车朝正x方向滑行的过程中,第(n-1)个沙袋扔到车上后的车速为Vn-1,第n个沙袋扔到车上后的车速为Vn,由动量守恒定律有[M+(n-1)m]Vn-12nmVn-1=(M+mn)VnVn=[M-(n-1)m]Vn-1÷(M+mn)①小车反向运动的条件是:Vn-10,Vn0,即M-nm0②M-(n+1)m0③代入数字,得:n<M/m=48/14n>(M/m)-1=34/14n应为整数,故n=3,即车上堆积3个沙袋后车就反向滑行.(2)车自反向滑行直到接近x0一侧第1人所在位置时,车速保持不变,而车的质量为M+3m.若在朝负x方向滑行过程中,第(n-1)个沙袋扔到车上后车速为Vn-1′,第n个沙袋扔到车上后车速为Vn′,现取在图中向左的方向(负x方向)为速度Vn′、Vn-1′的正方向,则由动量守恒定律有车不再向左滑行的条件是[M+3m+(n-1)m′]Vn-1′-2nm′Vn-1′=(M+3m+nm′)Vn′Vn′={[M+3m-(n-1)m′]Vn-1′}÷(M+3m+nm′)④Vn-1′0,Vn′≤0即M+3m-nm′0⑤M+3m-(n+1)m′≤0⑥或:n<(M+3m)÷m′=9n>(M+3m)÷m′-1=88≤n≤9n=8时,车停止滑行,即在x0一侧第8个沙袋扔到车上后车就停住.故车上最终共有大小沙袋3+8=11个.评分标准:全题12分.第(1)问4分:求得①式给2分,正确分析车反向滑行条件并求得反向时车上沙袋数再给2分.(若未求得①式,但求得第1个沙袋扔到车上后的车速,正确的也给2分。通过逐次计算沙袋扔到车上后的车速,并求得车开始反向滑行时车上沙袋数,也再给2分.)第(2)问8分:求得④式给3分,⑤式给1分,⑥式给2分。求得⑦式给1分。得到最后结果再给1分。(若未列出⑤、⑥两式,但能正确分析并得到左侧n=8的结论,也可给上述⑤、⑥、⑦式对应的4分.)1996设在地面上方的真空室内存在匀强电场和匀强磁场。已知电场强度和磁感应强度的方向是相同的,电场强度的大小E=4.0伏/米,磁感应强度的大小B=0.15特。今有一个带负电的质点以v=20米/秒的速度在此区域内沿垂直场强方向做匀速直线运动,求此带电质点的电量与质量之比q/m以及磁场的所有可能方向(角度可用反三角函数表示)。解:根据带电质点做匀速直线运动的条件,得知此带电质点所受的重力、电场力和洛仑兹力的合力必定为零。由此推知此三个力在同一竖直平面内,如右图所示,质点的速度垂直纸面向外。解法一:由合力为零的条件,可得①求得带电质点的电量与
本文标题:高考物理压轴题汇编
链接地址:https://www.777doc.com/doc-5356740 .html