您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 高Thiele模的Langmuir-Hinshelwood型动力学方程的有效因子
73《》017-No,31990ThieleLangmuirHinshelwood()TiheleLangtniurHinshelwood。Tihele,,x=O,,。x=O,y。,。,x=0x=,。xx=1,y(v’(。,。:、Langmiu--rHinhselw。。d,〔”。,,。,,,,。,.Thiele,。,,。,,(9)。。,LangmulHinshelwood,,。、LLangmuirHinshelwood(LH)r(C)kC(l+e)’(l)kK,C。(l)LH。:,,,。,,,,。198764186(1990)LH,(l)。C.,,,LH。,(l)。、,(,,)。,。〔+);(。):。(。,*)’“,(2)dC,~~~=U,~,U;《=,=,“(3)S,S=2,S1,S=0,,D,Cf。(2)(3),.2[],C,(l),~、krLL)=.,,r(C)=kC(4)C,C,(l),,,。,(4)(l)。(2)(3),(5)(4)(1)、,J、1.、,、.01JOn,.、.、`、、`.、、2“Kcf,-kRD(l+ccfy)(l+。)’/(l+)’(2),(3)JZv.5JvZ、、,-.J)A“x0,(6),(3〕,(4〕_n.__1dxu,`i,。,Tihele,S0,,(8)(9)。,,(8),(9),〔5,,。。,k,,。3:ThlieeLnagmuiHinshelwodo`817·,,_。?,,、。O,,。,yx=1,,(14)。,。、1+,Tihele。,(8))+x.d(l+)’(10)。,;1,,-“,dx3Dc,Rr`C”;(l+C)`!。,dx3dx,{(11)-(l+)’I*_;,(8)(9){·-!0,;(l+)(12),Xó............VìXddì``,d!k2RhD(13)R、................Zh(l+yK),(8),(9){-}dx-{x=0,(l+)’(14)dXx=1,=188(1990)`=l,zd’x`l(15),,。x10,l]0I,,【,l]。0[,y,y(l+)’,:+dx-=xdxy(16)。,0S=2,1,O。(16),(17)。(17),,、。,l],(8),(9)。x=,l)=1,,,(l),。1(16、(17)y(x)))y,(x)))(x)))c(、。(,’)]]]cr、*(,`)+。(,’)]]]+,’。,*(,’x)))SSS=22222XxxxxxC[I。(x)]]]c[I,(x)]]]I;(x)))SSS=lllllll——IIIIIIIII。(x)))CSh(x)))C【ch(x)111cth(x)))SSS=000000000c,,l0(x),I,(x)。0.5,0.9,0.95,0.99,`100,。th`),I,()/I。()l。3,4,,,。,=100,。=1,200,=.099,。1.5%。0.1%。,,10、、_.、,__,,.__,_~,。_.~~,、~1,,。3:ThileeLnagmuiHinshelwodo·18942(s=2)xxx()))))=10000,20000=30000=lll=llllll.000888y(0.8)))027263E16660.32047E3000yyyyy,(0.8)))0.54I85E14440.12779E277777yyyyy(.10)))099999991.0O00()))))yyyyy`(1.0)))0.1224lE3330.23I52E」333330.36724E01110,17364E`0,,,000.999y(0.9)))0.69219E8880,67240E15550.31998E2000yyyyy,(0.9)))0.13767EeeO5550.26821E12220.19163E1777yyyyy(1.0)))1.0001.000(10()))yyyyy’(10)))0.1224lE3330.23152E+3330.33154E3330.36724E)1110,17364Elll0.ll052Eee0111000.9555y(0.95)))0.11077E-0333.030903E0777062537E1000yyyyy’(0.95)))0.22037E)1110.12329E~04440.37457E0777yyyyy(1.0)))0.99999991000(l{X)000yyyyy`(10)))0.1224lE3330.23152E3330.33154E3330.36724E-lll0.17364E01110.11052E~0111000.9999y(0.99)))0.20755550.477E-0111010640E111yyyyy0.99)))04130lE2220.16150E2220,63731E+0111yyyyy(1.0)))1.OOO1.1.00(000yyyyy,(10)))0.12406E.3330.23155E)3330.33160E3330.37219E.lll0.17366Ewe)1110.11053E03333s(=1),=100=300ly(0.8)y,(0.8)y(1.0)y,(1.0)=200『=l0.296070E300.11843E271.00.232()9E30`11605E,010.64705Ewe150.25882E0120.99999f。O00.90.24529E160.49058E140.99999E{0.12298E03O.24596El0.65698Eee080.13140E~050.99999`T「`”0.31083E.-200.1865()E171.0W,`?’“’`O`n,OOùDI,VJVJVJ190(1990)3()s(=1)xxx()))))=10000“20000=30000=llla=llllll000.9555y(0.95)))0.10774E~.03330.39902E)7770.616281000yyyyy’(095)))0.21594E,lll0.12llgE)4440.36977E0777yyyyy(10)))1`0《X)l)))1.09999999yyyyy`(x.0)))Q12298E03330.23209E-H)3330.33220E3330.24596E{1110.1l6()5E01110.73823E222000.9999y(0.99)))0.20606E0.263E~01110.l06()2Elllyyyyy’(0.)))0.41212E.2220.16105E+02220.636llE0111yyyyy(1.0)))1.O00(1.X0000.9999999yyyyy’(1.0)))0.12465E】3330.23212E03330.33226E333024929E.lll0.11606E01110.73835E.)2224(s,0)xxx()))))`10000=20000p“30000lll=111=lll000.888y(0,8)))0.22134E16660.27395E3000yyyyy`(0.8)))0.44269E14440.10958E277777yyyyy(1.0)))1.00000001.()000000yyyyy`(。)))0.12355E03330.23267E」333330.12355E01110.58168Ees22222000.999y(0.9)))0.62524E~8880.62350E1555034754E1888yyyyy,(0.9)))012505E-05550.24940E12220.20853E1555yyyyy(1.0)))0.99999991.00001.0000000yyyyy,(。)))0.12355E03330.23267E03330.33286E+03330.12355E01110.58168E~2220.36984E)222000.9555y(095)))0.10507E0333029745E,7770.60786E1000yyyyy`(095)))0.21015E01110.ll898E04440.3647lE0777yyyyy(1.0)))1.00X()0001.000()0000.9999999(2.0)))0.12355E0333023267E3330.33286E3330.12355E01110.58168E.2220,36984E0222000.9999y(0.99)))0.20518E0.4()817E01110.10571E0111yyyyy(0.99)))0.41036E02220.15757E02220.63427E0111yyyyy(1.0)))1.)))1.OOO1.XK)))yyyyy,l(.0)))0.12517E03330.23267E3330.3329lE03330.12517E01110.58168E】2220.36990E023:TiehleLangmuiiHnsehwlood·191·1.Airs,R.,theMathematiealTheoyrofDiffusionandReaetioninePmreableCatalysts,I,11,ClarendonPerss,oxfodr(1975)2.VandenBosehB.,andLuss,D.,Chem.Eng.Sci.(1977)32,5603.Kapila,A.andMatkowskyB,J.,SIAMJ.Appl.Math.(1979)36.3734.Morbidelli,M.andVamra,A.,,Chem.Engcsi.(1983)38,2895.,,,,11166(1984)6.,,,[3]195(1986)CalculaitonofEffeeitvenessFaeotsrforhteLangmuHinshelwoodTyPeKineiteswihtHighThieleM6duilLinzhengguoLiYifei(`rinansIrituteofhCemicaleTehnol,)ABSTRACTAnewcalculationmethodofeffecitvenessafetorsfortheLangmiu--rHinshelwoodtyPekinetieswithhighThielemoduil15Presented.ForihghThielemoduil,numeicraldiiff-cultiesairseifanintegrationatx=015Perfomredasusual.That15thevalueofyatx=0beeomesveyrsmallandgoeseasilybeyondthenumeircalilmitaitonofdiigtaleomPutersbecauseofasteePgradient.Ifthis15theease,thenumeirealsolutionbeeomesveyrdiiffeultorfails.InordertoeoPewiththisdiiffeulty,weutilizetheifrstodreranalytiealsolutionoftheProblemforx=otox=.Westartthenumeircalintegrationformx=tox=1withtheassumedy()andtheeorersPondingdeirvativey`()obtainedfromtheanalyitealsolu·iton.AProPershootingProceduer15necessaryforthewanetdaecuracyofsolution.Keywo:KinetiesmethodEffeetivenessfaetorsCatalyst
本文标题:高Thiele模的Langmuir-Hinshelwood型动力学方程的有效因子
链接地址:https://www.777doc.com/doc-5368449 .html