您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 数字化变电站发展和展望
1数字化变电站和智能电子装置的发展和展望摘要:随着智能电子设备的飞速发展,变电站综合自动化技术即将进入全数字化的新阶段。目前,国际上还没有建成真正意义上的全数字化变电站,而IEC61850标准的发布,为数字化变电站的建立提供了统一的科学的标准规范。本文介绍了数字化变电站的发展方向,进一步分析了光电式互感器在数字化变电站应用中的突出优点,并提出了目前综合自动化设备维护中各专业之间协调与管理存在的问题及解决方法。关键词:数字化变电站;光电式互感器;变电站综合自动化DevelopmentandPropectsofDigitalSubstationandIntelligentElectronicDevicesAbstract:Alongwiththefastdevelopmentofelectronicdevices,thesubstationautomationtechnologyisonthepointofenteringthenewdigitalage.Untilnow,therehasn’tbeenanywhollydigitalsubstationallaroundtheworld.However,theissuanceofIEC61850hasprovidedaunifiedscientificstandardfordigitalsubstationconstruction.Thepaperfirstintroducesthedevelopmentdirectionofdigitalsubstation.Theoutstandingadvantagesofopticalelectronictransformer’sapplicationindigitalsubstationarefurtheranalyzed.Theproblemsandsolutionmethodofcooperationandmanagementinthemaintenanceofintegratedautomationequipmentsarepresented.Keywords:digitalsubstation;opticalcurrenttransformer;integratedautomationofsubstation0引言变电站综合自动化技术经过十多年的发展已经达到一定的水平,在我国城乡电网改造与建设中已得到认可。而随着智能化的一次设备(一次设备被检测的信号回路和被控制的操作驱动回路采用微处理器和光电技术设计)的出现,常规电流电压互感器被光电电流互感器、光电电压互感器取代,采集传统模拟量被直接采集数字量所取代,变电站内常规的二次设备,如继电保护装置、防误闭锁装置、测量控制装置、远动装置、故障录波装置、电压无功控制、同期操作装置以及正在发展中的在线状态检测装置等全部基于标准化、模块化的微处理机设计制造,设备之间的连接全部采用高速的网络通信,二次设备通过网络真正实现数据共享、资源共享。变电站的运行管理自动化应包括电力生产运行数据、状态记录统计无纸化;数据信息分层、分流交换自动化等等[1]。随着集成电路和计算机技术的飞速发展,各种新型的大规模集成电路将会进一步应用在继电保护和测控装置上,如32位CPU、数字信号处理芯片DSP、高速数据采集系统、嵌入式实时操作系统、大容量Flash、可编程逻辑器件CPLD、FPGA等。这些新器件的应用将使保护和测控装置的电路板更加小型集成化,装置通信、数据存储及处理能力更强。将间隔的控制、保护、故障录波、事件记录和运行支持系统的数据处理等功能,通过模块化设计集成在一个统一的多功能数字装置内是可行的,间隔内部和间隔间以及间隔同站级间的通信可统一用一层网即光纤以太网来实现。高集成化系统的发展,无疑能降低成本,提高系统可靠性,有利于实现统一的运行管理[2]。目前在许多中低压站已实现。变电站自动化系统最终向数字化发展,指的是智能化电气的发展,如智能开关设备、光电式电压和电流互感器、智能电子装置(IED)等的出现,使变电站自动化技术进入了数字化阶段。智能化一次设备的数字化传感器、数字化控制回路逐渐取代传统的一次回路,使变电站层、间隔层、过程层最终用网络联接起来,并实现统一的通信标准。1数字化变电站发展现状1.1数字化变电站自动化系统的特点[3]数字化变电站是以IEC61850系列标准为先导牵引,以OCVT/ECVT等非常规互感器、智能断路器技术发展为突破口,以网络技术发展为支撑的系统化工程。与传统变电站相比,具有八大主要技术特征,引入了过程层的概念,信息应用模式发生了根本变化,基于网络的信息交互更加广泛,更加智能化的一次设备与二次设备的界限变得模糊,一次和二次设备实现了初步的融合,这也符合未来的技术发展趋势。(1)智能化的一次设备2一次设备被检测的信号回路和被控制的操作驱动回路采用微处理器和光电技术设计,简化了常规机电式继电器及控制回路的结构,数字程控器及数字公共信号网络取代传统的导线连接。换言之,变电站二次回路中常规的继电器及其逻辑回路被可编程序代替,常规的强电模拟信号和控制电缆被光电数字和光纤代替。(2)网络化的二次设备变电站内常规的二次设备,如继电保护装置、防误闭锁装置、测量控制装置、远动装置、故障录波装置、电压无功控制、同期操作装置以及正在发展中的在线状态检测装置等全部基于标准化、模块化的微处理机设计制造,设备之间的连接全部采用高速的网络通信,二次设备不再出现常规功能装置重复的I/O现场接口,通过网络真正实现数据共享、资源其享,常规的功能装置在这里变成了逻辑的功能模块。(3)自动化的运行管理系统变电站运行管理自动化系统应包括电力生产运行数据、状态记录统计无纸化;数据信息分层、分流交换自动化;变电站运行发生故障时能即时提供故障分析报告,指出故障原因,提出故障处理意见;系统能自动发出变电站设备检修报告,即常规的变电站设备“定期检修”改变为“状态检修”。1.2数字化变电站自动化系统的结构[4]在变电站自动化领域中,智能化电气的发展,特别是智能开关、光电式互感器机电一体化设备的出现,变电站自动化技术进入了数字化的新阶段。在高压和超高压变电站中,保护装置、测控装置、故障录波及其他自动装置的I/O单元,如A/D变换、光隔离器件、控制操作回路等将割列出来作为智能化一次设备的一部分。反言之,智能化一次设备的数字化传感器、数字化控制回路代替了常规继电保护装置、测控等装置的I/O部分;而在中低压变电站则将保护、监控装置小型化、紧凑化,完整地安装在开关柜上,实现了变电站机电一体化设计。数字化变电站自动化系统的结构在物理上可分为两类,即智能化的一次设备和网络化的二次设备;在逻辑结构上可分为三个层次,根据IEC6185A通信协议草案定义,这三个层次分别称为“过程层”、“间隔层”、“站控层”。各层次内部及层次之间采用高速网络通信。1.2.1过程层过程层是一次设备与二次设备的结合面,或者说过程层是指智能化电气设备的智能化部分。过程层的主要功能分三类:(1)电力运行实时的电气量检测;(2)运行设备的状态参数检测;(3)操作控制执行与驱动。(1)电力运行的实时电气量检测与传统的功能一样,主要是电流、电压、相位以及谐波分量的检测,其他电气量如有功、无功、电能量可通过间隔层的设备运算得出。与常规方式相比所不同的是传统的电磁式电流互感器、电压互感器被光电电流互感器、光电电压互感器取代;采集传统模拟量被直接采集数字量所取代,这样做的优点是抗干扰性能强,绝缘和抗饱和特性好,开关装置实现了小型化、紧凑化。(2)运行设备的状态参数在线检测与统计变电站需要进行状态参数检测的设备主要有变压器、断路器、刀闸、母线、电容器、电抗器以及直流电源系统。在线检测的内容主要有温度、压力、密度、绝缘、机械特性以及工作状态等数据。(3)操作控制的执行与驱动操作控制的执行与驱动包括变压器分接头调节控制,电容、电抗器投切控制,断路器、刀闸合分控制,直流电源充放电控制。过程层的控制执行与驱动大部分是被动的,即按上层控制指令而动作,比如接到间隔层保护装置的跳闸指令、电压无功控制的投切命令、对断路3器的遥控开合命令等。在执行控制命令时具有智能性,能判别命令的真伪及其合理性,还能对即将进行的动作精度进行控制,能使断路器定相合闸,选相分闸,在选定的相角下实现断路器的关合和开断,要求操作时间限制在规定的参数内。又例如对真空开关的同步操作要求能做到开关触头在零电压时关合,在零电流时分断等。1.2.2间隔层间隔层设备的主要功能是:(1)汇总本间隔过程层实时数据信息;(2)实施对一次设备保护控制功能;(3)实施本间隔操作闭锁功能;(4)实施操作同期及其他控制功能;(5)对数据采集、统计运算及控制命令的发出具有优先级别的控制;(6)承上启下的通信功能,即同时高速完成与过程层及站控层的网络通信功能。必要时,上下网络接口具备双口全双工方式,以提高信息通道的冗余度,保证网络通信的可靠性。1.2.3站控层站控层的主要任务是:(1)通过两级高速网络汇总全站的实时数据信息,不断刷新实时数据库,按时登录历史数据库;(2)按既定规约将有关数据信息送向调度或控制中心;(3)接收调度或控制中心有关控制命令并转间隔层、过程层执行;(4)具有在线可编程的全站操作闭锁控制功能;(5)具有(或备有)站内当地监控,人机联系功能,如显示、操作、打印、报警,甚至图像,声音等多媒体功能;(6)具有对间隔层、过程层诸设备的在线维护、在线组态,在线修改参数的功能;(7)具有(或备有)变电站故障自动分析和操作培训功能。1.3IEC61850通信及建模标准[5]IEC61850通信及建模体系不同于以往的传统规约,是一套完整的体系,包含了10个标准文本;自2004年第一版颁布后,我国电力标委会积极跟踪研究并转化为国内DL/T860系列行业标准,并与2007年11月提出了《DL/T860系列标准工程化实施技术规范》,以规范在我国的实际工程应用。IECTC57工作组也在不断地补充和完善IEC61850系列标准,推出的IEC61850-9-2/LE版是IEC61850-9-2的更为明确定义的限定性、实例化的配套规范;IEC61850的第二版即将于2009年发布,这一新版本主要是解决第一版存在的问题,如标准内容本身前后不一致的、表述模糊导致各厂家理解不一致的、被厂家在开发产品的过程中发现且TC57工作组确认是需要解决的问题等,针对SCL的应用情况还拓展出了SED、IID等相关标准,还规范了变电站与变电站间,变电站与控制中心间的IEC61850-90标准,此外还会增加一些新的逻辑节点类。未来的第三版将重点关注通信的安全性,在其它领域如风电,水电,新能源发电等领域的扩展应用。由于制定该系列标准时采用了先进的面向对象建模理念和分层、映射的策略,使该系列标准与传统的其他规约标准相比具有突出的优势。对变电站自动化及其相近系统通过统一建模的方式规范信息内容,这部分标准采用了通信服务和通信映射相分离的策略,确保了其内容的长期稳定性,通过分层和映射的策略使得标准能够适应网络通信等技术的快速发展,内核是稳定的,外部的大多数变化只影响系列标准的一小部分,使该系列标准获得更好的稳定性与适应性。目前,已有越来越多的新建变电站监控系统要求支持IEC61850MMS协议,对间隔层的逻辑互锁功能要求用GOOSE机制来实现。IEC61850系列标准适用的业务领域也在拓展,比如风电等新能源领域、低压智能配电、工业自动化等领域,相关的探索和研究应用也在快速开展。可以预见IEC61850未来会扩展到更广泛的工业领域,真正实现“一个世界,一个标准,一个技术”的伟大构想。2智能电子装置发展现状2.1光电式互感器2.1.1传统的电磁式电流互感器存在的问题[6]在电力系统中,电磁感应式电流互感器被用于测量电流已有一百多年的历史,它们具4有结构简单、运行稳定等优点。但随着电力系统向高电压大电流方向的发展,传统的电磁式电流互感器越来越呈现出由于其工作原理所决定的技术上难以解决的困难,弊端
本文标题:数字化变电站发展和展望
链接地址:https://www.777doc.com/doc-539517 .html