您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 研究生固体物理-第二章-晶体的结合
正负离子的电子壳层饱和,电子云分布基本上球对称,满足球密堆积原则。第二章晶体的结合§2.1晶体结合的基本类型一、离子晶体典型晶体:NaCl、LiF等结合能~150kcal/mol共价结合的特征是具有方向性和饱和性。电子云分布不是球对称的,不满足球密堆积原则。二、共价晶体共价结合的键合能力相当强,共价晶体一般硬度高,熔点高。结合能:~150kcal/mol典型晶体:金刚石、SiC等结合能:~50kcal/mol三、金属晶体金属离子实的电子云分布基本上是球对称的,符合球密堆原则。金属晶体的最主要特征是有共有化电子,因而金属具有高的导电性和导热性。典型晶体:Na、Cu等分子结合的特征:电子云的分布基本上是球对称的,符合球密堆原则。四、分子晶体VanderWaals结合相当弱,熔点很低(Kr:117K,Ar:84K)结合能:~1kcal/mol典型晶体:Ar、CH4等氢键晶体由氢原子与其他负电性较大的原子(如F、O等)或原子团结合而成。五、氢键晶体结合能:~10kcal/mol典型晶体:H2O、HF、KH2PO4(KDP)等F-F-H+设晶体中任意两个粒子的相互作用能可表为:()mnaburrr§2.2晶体中粒子的相互作用一、双粒子模型其中a、b、m、n均为大于零的常数,由实验确定。若两粒子要稳定结合在一起,则必须满足nm。设晶体中有N个粒子,晶体的总相互作用能为:11ijjj1j1jj1222NNNmnNNabUuurri,ji≠jj0jj2mmnnNabUrrrjjrr对立方晶体,设,二、晶体的相互作用能rj:第j个原子到原点的距离mnABUrrrj0j2mNaAj0j2nNbB其中A、B、m、n待定,00rdUdr由平衡条件00,,,,,,rABmnUABmn结合能W:设想将晶体拆分成无相互作用的单个原子(离子或分子)时,外力所做的功称为晶体的结合能W00WU0Wrr0U(r)U0由热力学第一定律dU=TdS–pdV,不考虑热效应,即TdS=0(实际上只有当T=0时才严格成立),有dU=–pdVdpKdVV定义:体积压缩模量(体变模量)0202VdpdUKVVdVdV(平衡时)dp为压强增量,-dV/V为相对体积压缩晶体体积:V=Nv=Nr3若已知粒子相互作用的具体形式,还可确定几个待定系数,这样即可将晶体相互作用能的表达式完全确定下来。N:晶体中粒子的总数v:平均每个粒子所占的体积:体积因子,与晶体结构有关r:最近邻两粒子间距离任意两离子间的相互作用能为02()4nqburrr2nj00jj1(2)24jqbUNrr§2.3离子晶体的结合能一、AB型离子晶体的结合能设晶体中有N个正离子和N个负离子,q:一个离子所带的电量,异号:=+1;同号:=-102()4nNqBUrrrjjrr令,r为最近邻两离子间的距离,有jj0j——Madelung常数,只与晶体结构有关j0jnbBN待定u实验(10-18J/pair)u理论(10-18J/pair)NaCl-1.27-1.25NaBr-1.21-1.18KCl-1.15-1.13KBr-1.10-1.08RbCl-1.11-1.10RbBr-1.06-1.05二、Madelung常数的求法——Evjen中性组合法以二维情况为例:11111441.293214221111111444841.6072224252231.6105NaCl结构CsCl结构ZnS结构1.7481.7631.638在t时刻,第一个饱和原子所产生的电场为:113rpE§2.4分子晶体的结合能一、两个饱和原子间的相互作用12121upEpE两个饱和原子间的吸引能:1213rppE第二个原子的极化::原子极化率。12136ppprr61r两个饱和原子间的排斥能为:2121ur两个饱和原子相互作用能:612()aburrr126()4urrr——Lennard-Jones势16ba24ab——为待定系数和0roru(r)u0当r=时,u()=0,这时吸引能与排斥能相等;的物理意义是两个饱和原子间的结合能。设晶体中有N个饱和原子,则晶体的互作用能为1260jj42NUrrj126126()2AAUrNrr二、分子晶体的结合能12A12j0j16A6j0j1只与晶体结构有关和令rrjjr:最近邻原子间距离对于惰性元素晶体(除He外),均具有fcc结构。1612062rAA0UN2612A2A34K5232612A2A由平衡条件和体变模量可计算出:对于fcc:,,01.09r08.6UN37.5Kfcc:A12=12.13;A6=14.45u实验(eV/atom)u理论(eV/atom)Ne-0.02-0.027(-0.019)Ar-0.08-0.089(-0.080)Kr-0.11-0.120(-0.113)Xe-0.17-0.172§2.5共价结合一、共价键的形成VA、VB:作用在电子上的库仑势A和B:A、B两原子的能级A、B:归一化原子波函数222AAAAAAHVm222BBBBBBHVm当两原子相互靠近,波函数将出现重叠,形成共价键。系统的哈密顿量为:22221212121222AABBHVVVVVmm波动方程:=E令(r1,r2)=(r1)(r2)忽略电子-电子间的相互作用V12,用分子轨道法来简化波动方程。222iiiiiiBiAiHVVmi=1,2分子轨道:=c(A+B),设BAc:归一化因子,:B原子波函数对分子轨道贡献的权重因子。若A、B为同种原子,则=±1。222ABABABVVccm00aaabbabbHHHH利用:ijijdi,j=A,BHab:正原子核对负电子云的库仑作用,Hab0。令2abVH32BAVaaAAAHHdbbBBBHHdabABBAbaHHdHdH方程有解条件——久期方程(Secularequation)3232202ABABVVVV32230202ABABVVVV+和+所对应的状态称为成键态-和-所对应的状态称为反键态解得2223222322ABABVVVV及22233222233211VVVVVVVV2V32223VV2223VV+成键态-反键态BA我们将这样一对归两个原子所共有的自旋方向相反配对的电子结构称为共价键。0202VV11{{若A、B两原子为同种原子:A=B=0,V3=0成键态能级反键态能级能量11饱和性:每一个H原子最多只能与另一个原子形成一个共价键,所以说共价键具有饱和性。共价结合的基本特征:方向性和饱和性。(以H原子结合成氢分子为例)方向性:电子云的分布主要集中在两个H原子的连线方向上,即电子云的分布有一择优取向,电子云密度最大的方向也即共价键的方向。二、共价键与离子键间的混合键完全离子结合(如NaCl):正负离子通过库仑相互作用结合在一起,Na+和Cl-的电子云几乎没有重叠。完全共价结合(如金刚石):相邻两个C原子各出一个未配对的自旋相反的电子归这两个原子所共有,在这两个原子上找到电子的概率相等,即这两个C原子对共价键的贡献完全相同,||=1。当A、B两原子为不同种原子时,,这时A、B两原子对分子轨道的贡献并不相同,即在A、B两原子上找到电子的概率并不相等。分子轨道:=c(A+B)这种结合不是纯的共价结合,而是含有离子键的成分。有部分电荷从B原子转移到A原子。1.有效离子电荷q*(以GaAs为例)Ga原子(B原子)的有效离子电荷为2*B2λq=3-81+λAs原子(A原子)的有效离子电荷为*A21q=5-81+λA21P=1+λ2B2λP=1+λPA、PB:在A、B原子上找到电子的概率Ge:|q*|=0GeGeGaAs:|q*|=0.20GaAsZnSe:|q*|=0.34SeZna.Coulson标度2ABi2ABP-P1-λf==P+P1+λ2.电离度PA、PB:在A原子和B原子上找到电子的概率b.Pauling标度2iABf=1-exp-x-x/4xA、xB:A、B原子的负电性c.Phillips标度22i222hgCCf==E+CE:成键态与反键态之间的能量间隙22ghE=E+CEh和C:共价结合成分与离子结合成分对能隙的贡献Eh和C可由光学系数的测量从实验结果得到当fi0.785时,晶体取4配位的闪锌矿结构或纤锌矿结构当fi0.785时,晶体取6配位的NaCl结构C原子的基态为:1s22s22p21s2s2p分子轨道由原子的2s、2px、2py和2pz轨道的线性组合组成,称为sp3杂化轨道。三、杂化轨道以金刚石为例:形成一个C-C键,能量降低3.6eV1s2s2p+4eV轨道杂化:在成键过程中,由几个能量接近的原子轨道重新组合成成键能力更强的新分子轨道的现象。电子从2s→2p需4eV四、共价晶体的结合能W.Kohn和P.Hohenberg发展了局域密度泛函理论。利用这个理论,对各种半导体材料和金属材料的结合能、晶格常数和体积压缩模量进行计算,计算结果与实验符合得相当好。CSiGeW计算(eV/atom)7.584.674.02W实验(eV/atom)7.374.633.85
本文标题:研究生固体物理-第二章-晶体的结合
链接地址:https://www.777doc.com/doc-5423675 .html