您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 迈克尔逊干涉仪实验论文
迈克尔逊干涉仪及其应用摘要:本文介绍了迈克尔逊干涉仪及其原理在微小位移量的测量、角度测量、体浓度测量、引力波测量、光谱测量、光谱成像,光纤迈克尔逊干涉仪在混凝土内部应变的测量、温度测量、地震波加速度的测量中的应用,重点介绍全息干板膜的厚度测量关键词:迈克尔逊干涉仪微小物理量的测量引言:引言随着全息技术的不断发展,全息干板在科学研究和工业生产中得到了广泛使用。全息干板膜的厚度是全息干板的一个重要参数,对于其在全息技术中的应用具有重要的意义。全息干板膜的厚度一般从几微米到几十微米不等,对于普通椭偏测厚仪来说太厚,如果使用螺旋测微器测量则误差太大。目前,市场上也有不少专用的膜厚测量仪器,但价格昂贵。笔者通过巧妙设计,利用现有大学物理实验室中的迈克尔逊干涉仪完成了对全息干板膜的厚度测量。迈克尔逊干涉仪迈克尔逊干涉仪,是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹。主要用于长度和折射率的测量,若观察到干涉条纹移动一条,便是M2的动臂移动量为λ/2,等效于M1与M2之间的空气膜厚度改变λ/2。在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。利用该仪器的原理,研制出多种专用干涉仪。干涉原理测量光程之差从而测定有关物理量的光学仪器。两束相干光间光程差的任何变化会非常灵敏地导致干涉条纹的移动,而某一束相干光的光程变化是由它所通过的几何路程或介质折射率的变化引起,所以通过干涉条纹的移动变化可测量几何长度或折射率的微小改变量,从而测得与此有关的其他物理量。测量精度决定于测量光程差的精度,干涉条纹每移动一个条纹间距,光程差就改变一个波长(~10-7米),所以干涉仪是以光波波长为单位测量光程差的,其测量精度之高是任何其他测量方法所无法比拟的。根据光的干涉原理制成的一种仪器。将来自一个光源的两个光束完全分并,各自经过不同的光程,然后再经过合并,可显出干涉条纹。在光谱学中,应用精确的迈克尔逊干涉仪或法布里-珀罗干涉仪,可以准确而详细地测定谱线的波长及其精细结构。干涉仪分双光束干涉仪和多光束干涉仪两大类,前者有瑞利干涉仪、迈克耳孙干涉仪及其变型泰曼干涉仪、马赫-秦特干涉仪等,后者有法布里-珀罗干涉仪等。干涉仪的应用极为广泛,主要有如下几方面:①长度的精密测量。在双光束干涉仪中,若介质折射率均匀且保持恒定,则干涉条纹的移动是由两相干光几何路程之差发生变化所造成,根据条纹的移动数可进行长度的精确比较或绝对测量。迈克耳孙干涉仪和法布里-珀罗干涉仪曾被用来以镉红谱线的波长表示国际米。②折射率的测定。两光束的几何路程保持不变,介质折射率变化也可导致光程差的改变,从而引起条纹移动。瑞利干涉仪就是通过条纹移动来对折射率进行相对测量的典型干涉仪。应用于风洞的马赫-秦特干涉仪被用来对气流折射率的变化进行实时观察。③波长的测量。任何一个以波长为单位测量标准米尺的方法也就是以标准米尺为单位来测量波长的方法。以国际米为标准,利用干涉仪可精确测定光波波长。法布里-珀罗干涉仪(标准具)曾被用来确定波长的初级标准(镉红谱线波长)和几个次级波长标准,从而通过比较法确定其他光谱线的波长。④检验光学元件的质量。泰曼干涉仪被普遍用来检验平板、棱镜和透镜等光学元件的质量。在泰曼干涉仪的一个光路中放置待检查的平板或棱镜,平板或棱镜的折射率或几何尺寸的任何不均匀性必将反映到干涉图样上。若在光路中放置透镜,可根据干涉图样了解由透镜造成的波面畸变,从而评估透镜的波像差。⑤用作高分辨率光谱仪。法布里-珀罗干涉仪等多光束干涉仪具有很尖锐的干涉极大,因而有极高的光谱分辨率,常用作光谱的精细结构和超精细结构分析。⑥历史上的作用。19世纪的波动论者认为光波或电磁波必须在弹性介质中才得以传播,这种假想的弹性介质称为以太。人们做了一系列实验来验证以太的存在并探求其属性。以干涉原理为基础的实验最为精确,其中最有名的是菲佐实验和迈克耳孙-莫雷实验。1851年,A.H.L.菲佐用特别设计的干涉仪做了关于运动介质中的光速的实验,以验明运动介质是否曳引以太。1887年,A.A.迈克耳孙和E.W.莫雷合作利用迈克耳孙干涉仪试图检测地球相对绝对静止的以太的运动。对以太的研究为A.爱因斯坦的狭义相对论提供了佐证微小物理量的测量物一些微小物理量的测量。物理工作者为提高被测物理量精度,常选用特殊的测量装置将理学家研究物理问题时,需要利用各种实验设备来进行物理实验。在物理实验中常常遇到被测物理量放大后再进行测量。迈克耳逊干涉仪的测量系统的机械部分都是采用螺旋测微装置进行测量的。常用的读数显微镜的测微丝杆的螺距是lmm,当丝杆转动一圈时,滑动平台就沿轴向前或后退lmm,在丝杆的一端固定一测微鼓轮,其周界上刻成100分格,因此当鼓轮转动一分格时,滑动平台移动了0.01mm,从而使沿轴线方向的微小位移用鼓轮圆周上较大的弧长精确地表示出来,大大提高了测量精度。位移量的测量由相干光源发出的相干光经透镜调整形成近似的平行光束而入射到周期性变化的分光元件上,相干光经周期性分光元件衍射分解为0,±1,±2,±3,……±n级次的出射光束,反射元件至少使每束出射光束的波阵面沿周期性分光元件刻线的垂直方向反转一定角度而形成反射光束并返回到周期性变化分光元件进行合束又形成0,±1,±2,±3,……±n级次的合束光束,第n级次的合束光束满足n=m1-m2,某一级次的合束光束的干涉条纹由接收器接收而变成电信号送至处理器处理,当周期性分光元件沿其刻线垂直方向位移时,干涉条纹数目的变化正比于该位移量的大小。光纤迈克尔逊干涉仪在角度测量、体浓度测量、引力波测量、光谱测量、光谱成像,混凝土内部应变的测量、温度测量、地震波加速度的测量中的也有着广泛的应用.全息干板膜的厚度的测量全息干板膜的厚度是全息干板的重要参数之一。使用迈克尔逊干涉仪和白光光源对2种全息干板膜厚度进行测量,并对测量结果误差进行分析,给出了测量误差与膜厚及折射率之间的关系以及此方法的适用范围。研究结果表明:在膜厚从8μm增至41μm的过程中,测量结果的绝对误差≤2μm且变化很小,相对误差则从14.1%降到了2.2%。随着膜厚的增加,相对误差明显降低;折射率”也参与了误差传递,其值与测量误差呈类似反比关系;当”值在1.5附近时,为保证测量的准确性,所测膜厚≥40μm。最后指出,迈克尔逊干涉仪在测量全息干板膜等较厚的薄膜时,具有测量范围大,结果较准确等优点结束语研究型物理实验是一种不同于传统物理实验教学的模式,它具有很强的灵活多样性,主要以激发我们的求知欲,拓宽其知识面,培养其创新思维能力为目的.我们通过利用迈克耳逊测量气体折射率作为一个研究型实验的案例,较详细地进行了研究型实验设计和实验测试与分析,结果表明可以作为一个很好的研究型实验项目提供给学生作为实验教学用迈克尔干涉仪实验拓展延伸一、传统迈克尔逊干涉仪的测量应用1.微小位移量和微振动的测量;采用迈克尔逊干涉技术,通过测量KDP晶体生长的法向速率和台阶斜率来研究其台阶生长的动力学系数、台阶自由能、溶质在边界层内的扩散特征以及激发晶体生长台阶的位错活性。He-Ne激光器的激光通过扩束和准直后射向分束镜,参考光和物光分别由反射镜和晶体表面反射,两束光在重叠区的干涉条纹通过物镜成像,该像用摄像机和录像机进行观察和记录.滤膜用于平衡参考光和物光的强度.纳米量级位移的测量:将迈克尔逊型激光干涉测量技术应用于环规的测量中。采用633nm稳频的He-Ne激光波长作为测量基准,采用干涉条纹计数,用静态光电显微镜作为环规端面瞄准装置,对环规进行非接触、绝对测量,配以高精度的数字细分电路,使仪器分辨力达到5nm;静态光电显微镜作为传统的瞄准定位技术在该装置中得以充分利用,使其瞄准不确定度达到30nm;精密定位技术在该装置中也得到了很好的应用,利用压电陶瓷微小变动原理,配以高精度的控制系统,使其驱动步距达到5nm。测振结构的设计原理用半导体激光器干涉仪对微振动进行测量时,用一弹性体与被测量(力或加速度)相互作用,使之产生微位移。将这一变化引到动镜上来,就可以在屏上得到变化的干涉条纹,对等倾干涉来讲,也就是不断产生的条纹或不断消失的条纹。由光敏元件将条纹变化转变为光电流的变化,经过电路处理可得到微振动的振幅和频率。压电材料的逆压电效应研究:压电陶瓷材料在电场作用下会产生伸缩效应,这就是所谓压电材料的逆压电现象,其伸缩量极微小。将迈克尔逊干涉仪的动镜粘在压电陶瓷片上,当压电陶瓷片受到电激励产生机械伸缩时就带动动镜移动。而动镜每移动λ/2的距离,就会到导致产生或消失一个干涉环条纹,根据干涉环条纹变化的个数就可以计算出压电陶瓷片伸缩的距离。2.角度测量:依照正弦原理改型设计了迈克尔逊干涉仪,可以完成小角度测量。仪器的两个反射镜由三棱镜代替,反射镜组安装在标准被测转动器件的转动台上。被测转角依照正弦原理转化成反射镜组两个立体棱镜的相应线位移,而后进行干涉测量,小角度干涉仪测角分辨率达到10-3角秒量级。在设计的角度测量仪中,两个反射镜都是平面镜,但动镜被固定到一个转台上,通过转台将转动角位移转换成迈克尔逊测长仪能够测量的线位移。从而把角度旋转转变为位移移动,从而用干涉仪测出角度的变化。3.薄透明体的厚度及折射率的同时测量目前各大学使用迈克尔逊干涉仪只测量已知厚度的薄膜的折射率或已知薄膜的折射率再测量它的厚度,经研究得出:可同时测量薄透明体厚度及折射率。其方法是:在不放薄膜时调出白光干涉条纹,而后插入透明薄膜,在薄膜与光线垂直时调出白光干涉条纹后,记录此时动镜移动的距离,再将薄膜偏转α角(45°比较方便),再调出白光干涉条纹,再记录动镜移动的距离。通过动镜这两次移动的距离和薄膜的偏转角,就可以同时计算出待测薄膜的厚度和折射率。4.气体浓度的测量:在迈克尔逊干涉仪的参考光路中,放入一个透明气体室,利用白炽灯做光源,在光程差为零的附近观察到对称的几条彩色条纹,中间的黑色条纹是等光程(Δ=0)精确位置。利用通入气体前后等光程位置的改变量,计算出气体的折射率,再利用气体的折射率与气体浓度的关系,计算出气体浓度。5.引力波探测(超大型迈克尔逊干涉仪)引力波存在是广义相对论最重要的预言,对爱因斯坦引力波的探测是近一个世纪以来最重大的基础探索项目之一。目前还没有直接证据来证明引力波的存在。目前,许多科学家正致力于利用激光干涉引力波探测仪来探测引力波。该仪器的主体是一台激光迈克尔逊干涉仪。在无引力波存在时,调整臂长使从互相垂直的两臂返回的两束相干光在分光镜处相干减弱,输出端的光电二极管接收的是暗纹,无输出信号。引力波的到来会使一个臂伸长另一臂缩短,使两束相干光有了光程差,破坏了相干减弱的初始条件,光电二极管有信号输出,该信号的大小与引力波的强度成正比。20世纪90年代中期,华盛顿州的Hanford和路易斯安娜州的Livingston开始建造引力波探测站,并于21世纪初相继建成臂长4000米、2000米的激光干涉仪引力波探测仪。据估计,引力波探测极有可能在今后10-20年内取得重大突破。二、光纤迈克尔逊干涉仪及其应用:1.光纤迈克尔逊干涉仪的原理光纤迈克尔逊干涉仪的系统。从半导体激光器输出的光,耦合到光纤中,经过耦合器分束进入干涉仪的两条光纤臂中,在光纤臂的两端直接镀上反射膜以实现传统分立元件迈克尔逊干涉仪中两反射镜的功能,由此反射回来的光再经耦合器汇合,形成干涉,由探测器进行检测。该干涉仪最大特点是光路全封闭,光纤两臂可绕成任意形状,结构灵活,抗电磁干扰,对被测介质影响小,适应性强等特点,因此,它的应用可以延伸到许多传统干涉仪的禁区,例如用于恶劣环境的高灵敏度传感、水声探测和地下核爆核查测试。它是许多高灵敏度光纤传感器的重要物理基础。由于光纤两个反射臂中的光传导特性可以受到温度、压力等外在条件的影响,所以,光纤迈克尔逊干涉仪可以实现光纤应变、温度等物理量的测量。2.光纤迈克尔逊干涉仪的应用:(1).
本文标题:迈克尔逊干涉仪实验论文
链接地址:https://www.777doc.com/doc-5452861 .html