您好,欢迎访问三七文档
5-1试回答:用单位荷载法计算结构位移时有何前提条件?单位荷载法是否可用于超静定结构的位移计算?aAFPFPBCaaaaDENCDNCENBENADNBCNACDEFF0,FF2FFFABPPPPRRFFFF=========−由对称性分析知道1−22−2211212121222−22NNP122(2)2FF1()26.832222()PPPcxPFaFalFaFaEAEAEAEAEA××−×−×−×−×∆==×+×+=↓∑5-4已知桁架各杆截面相同,横截面面积A=30cm2,E=20.6×106N/cm2,FP=98.1kN。试求C点竖向位移yCΔ。k5PF−5PF−5PF−5PF−54PF54PF54PF2PF2PF25544PPPPFFFF===NADNAENECNEF由节点法知:对A节点F=-5F对E节点FFk1115(122516()()24)411.46()NNPycPPPFFlFFFEAEAcm=∆==×××+××+×−××=↓∑NADNAE由节点法知:5对A节点F=-F25-5525-5已知桁架各杆的EA相同,求AB、BC两杆之间的相对转角BΔθ。8kN42424242-42-4244884444-4-4-8-8-12-12杆的内力计算如图所示施加单位力在静定结构上。其受力如图142142141414−28141424−其余未标明的为零力杆11(1242)NNPBFFlEAEAθ∆==−∑5-6试用积分法计算图示结构的位移:(a)yBΔ;(b)yCΔ;(c)Bθ;(d)xBΔ。(a)211232113421yc1004142B()1()26()111()()()26111=()30120pllpqqqxxqlqqMxqxxlMxxqqMxMxdxqxxdxEIEIlqlqlEI−=+−=+=−∴∆=×=++∫∫以点为原点,向左为正方向建立坐标。显然,ABq2q1lEI(b)22ql254qlPMl74lM2224113153251315127()()324244342243416ycqlqllqllqllllllqlEIEI∆=××+××+××+××+××=↓(c)22201()(sin)12(1cos)2()1111[(sin)12(1cos)]2(8-3)-1.42=()EIEIBMRRMRRRdEIπϕϕϕϕθϕϕϕπ=×−×−==××−×−=∫逆时针l3l4ABCqlEI=常数OAB1kN/m2kNR=2m4m(d)ϕθqdsqRdθ=20()sin()(1cos)MqRdRqRϕϕθϕθϕ=×−=−∫2240()sin111()()(1cos)sin()2xBMRMMdsqRRRdqREIEIEIπϕϕϕϕϕϕϕ=∆==−=←∫∫5-7试用图乘法计算图示梁和刚架的位移:(a)yCΔ;(b)yDΔ;(c)xCΔ;(d)xEΔ;(e)Dθ;(f)yEΔ。(a)3212121Ax以为原点,向右为正方向建立坐标26yc0()51(0x3)2()13(3x6)2181()()()MxxxxMxxMxMxdxEIEI=−≤≤=−≤≤∆=×=↓∫BORAqEI=常数(b)6m2m2m2kN/m6kNABCDE1mEI=常数A0.5163PMM611211(23)623662384311(32162(3)(6))62225+612()62yDEIEIEIEIEI∆=××−××××××+×××+××+−+×−×××=↓(c)2kN2kN2EI6mADCBEIEI2kN/m3m3m3m2323611183036PM642M23(21822182230423018423042366436630)6261226918+(2366)63()638xcEIEIEIEI∆=××+××+××+×+×+××+××+×+×××××+××××=→(e)k6.56.513.542261216MPM181211110(1231)(2121)2612141111311(1016)(226)(416)13.5326232486227=()316PDPMMdsFFEIkEIEIEIEIEIkEIkθ=+=×××+××−×××−××−××××+××−+∑∫顺时针5-9图示结构材料的线膨胀系数为α,各杆横截面均为矩形,截面高度为h。试求结构在温度变化作用下的位移:(a)设h=l/10,求xBΔ;(b)设h=0.5m,求CDΔ(C、D点距离变化)。(a)EIABCEIEIDk4kN2kN/m6m4m4m4m3mlAB+35℃+25℃CDl+25℃+25℃11LLM1N1202102226030t=tt1022t101=301(2)2=30(102)/23010NkttttCCtFdsMdshlllhllllααααααα+===∆−=∆∆=+××××+××++×=∑∑∫∫(b)ABCD0000000+t+t+t4m4m4m3m34−34−5454111−1−1−N图33055451+5(1)12(43243)42254.5()NktttFdsMdsthttthtααααααα∆∆=+=××××+××−×+××××+×=→←∑∑∫∫M图5-10试求图示结构在支座位移作用下的位移:(a)CΔθ;(b)yCΔ,CΔθ。(a)hADCED′C′E′B′Ba2l2lbCΔθ1001h1h1[()]()RCaFCahhθ∆=−=−−×=∑方向与图示一致(b)c1ABCDB′C′A′a2a2aD′c2c310.51.50RF图12211331[]()2222RycFCCCCC∆=−=−−=−↓∑134a54a12a123213351531[]442442CCCCCCCaaaaaaθ∆=−−+=−−习题6-1试确定图示结构的超静定次数。(a)(b)2次超静定6次超静定(c)(d)(e)(f)(g)所有结点均为全铰结点(h)6-2试回答:结构的超静定次数与力法基本结构的选择是否有关?力法方程有何物理意义?6-3试用力法计算图示超静定梁,并绘出M、FQ图。(a)FPA2l3l3B2EIEIC4次超静定3次超静定II去掉复铰,可减去2(4-1)=6个约束,沿I-I截面断开,减去三个约束,故为9次超静定沿图示各截面断开,为21次超静定III刚片I与大地组成静定结构,刚片II只需通过一根链杆和一个铰与I连接即可,故为4次超静定题目有错误,为可变体系。pFplF32解:上图=l1MpM01111=∆+pXδ其中:EIlllllllEIllllEI8114232332623232333211311=××+××+×××+××××=δEIlFllFllFEIlpppp817332322263231−=×−××−×=∆08178114313=−EIlFXEIlppFX211=pMXMM+=11lFp61lFp61pQXQQ+=11pF21⊕pF21(b)l2l2l2lABCDEI=常数FPl2EF+X1=1M图Q图解:基本结构为:l1M3ll2MlFp21pMlFp31=∆++=∆++0022221211212111ppXXXXδδδδpMXMXMM++=2211pQXQXQQ++=22116-4试用力法计算图示结构,并绘其内力图。(a)解:基本结构为:20kN/m3m6m6mAEI1.75EIBCDFPX1X2FP20kN/mX11MpM01111=∆+pXδpMXMM+=11(b)解:基本结构为:计算1M,由对称性知,可考虑半结构。a21EI=常数qACEDB4a2a4a4a166810810X1111M计算pM:荷载分为对称和反对称。对称荷载时:aq22q2qa2qa26qa26qa26qa反对称荷载时:aq22qa2q2qa2qa28qa28qa28qa22qa214qa22qa01111=∆+pXδpMXMM+=116-5试用力法计算图示结构,并绘出M图。(a)6m6m3m3mABCEI2EIEID11kN22pM解:基本结构为:1M2MpM用图乘法求出pp21221211,,,,∆∆δδδ=∆++=∆++0022221211212111ppXXXXδδδδ(b)解:基本结构为:EI=常数6m6m6mEDACB20kN/mX1X211KN1121663311KN33X1X120kN/mX2X21M2MpMM()EIEI1086623323326611=××+××+××=δ()03323326612=××−××=EIδ()EIEI1086623323326622=××+××+××=δEIEIp27003231806212362081632323180621121=××××+×××××+××××=∆EIEIp5403231806212362081632323180621122=××××−×××××+××××=∆−=−=⇒=+=+5250540108027001082111XXEIXEIEIXEImKNMCA⋅=×−×−=9035253180mKNMCB⋅=×+×−=12035253180()mKNMCD⋅−=−×=3056(c)36336111118090150301506m3m5III10kN·m10kN·mEA=∞CABD5I12m解:基本结构为:⊕1N1MpM()EIIEEI5558293299233256633263111=×××+××+×××+×××=δ()EIIEp1442103109109231025661−=××+×+××+×××−=∆01111=∆+pXδ29.11=⇒XmKNMAC⋅=−×=61.11029.19mKNMDA⋅−=−×=13.61029.13mKNMDC⋅=×=87.329.13M(d)6m3m5IIIEA=∞DABE2I5ICEA=∞10kN/mFG10kN·m10kN·mX110kN·m11933910kN·m10kN·m10103.873.876.136.131.611.61解:基本结构为:1M2MpM()()EIIEEI6.111293299233256623326311=×××+××+×××+×××=δ()EIIE2.256396256612−=×+×××−=δ()()EIIEIE4.5066226666256622=×××+×××=δ()EIEIIEEIp25.17216456325194540534059245325664334533111=×××−×+×+××+×××+××××=∆02=∆p10kN/mX1X21339966140545−=−=⇒=+−=+−69.839.1704.502.25025.17212.256.111212121XXXEIXEIEIXEIXEImKNMAD⋅=×−=49.24839.179405()mKNMBF⋅=×−−×=37.10439.17969.86()mKNMFE⋅−=−×=17.5239.173()mKNMCG⋅−=−×=14.5269.8617.52M49.24837.10414.526-6试用力法求解图示超静定桁架,并计算1、2杆的内力。设各杆的EA均相同。(a)(b)题6-6图6-7试用力法计算图示组合结构,求出链杆轴力并绘出M图。(a)解:基本结构为:aFPFPaaa121.5m2m2m1230kNlllEIABCFPkθ=12EIlEA=2EIl2PFl2lFpPF1MpM()EIllklllEIlEAl272222262311=+××+=θδ()EIlFlklFllFllFEIlppppp2222631=+×+××=∆θ01111=∆+pXδpFX721−=⇒lFlFlFMpppA73272=×−=lFp73lFp72M(b)6-8试利用对称性计算图示结构,并绘出M图。(a)6m6m9mABCEA=∞FP2EIEIEIDEFEA=∞aaaa
本文标题:第五六七章习题答案
链接地址:https://www.777doc.com/doc-5548130 .html