您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 线段、射线、直线(提高)知识讲解
线段、射线、直线(提高)知识讲解【学习目标】1.在现实情境中进一步理解线段、射线、直线,并会用不同的方式表示;2.通过操作活动,了解“两点确定一条直线”的几何事实,积累数学活动经验;3.能够运用几何事实解释和解决具体情境中的实际问题;4.通过从事观察、比较、概括等活动,发展抽象思维能力和有条理的数学表达能力.【要点梳理】要点一、线段、射线、直线的概念及表示方法1.概念:绷紧的琴弦、黑板的边沿都可以近似地看作线段,如果把“线段”作为最简单、最基本原始概念,则用“线段”定义射线和直线如下:(1)将线段向一个方向无限延长就形成了射线.(2)将线段向两个方向无限延长就形成了直线.要点诠释:(1)线段有两个端点,可以度量,可以比较长短.(2)射线只向一方无限延伸,有一个端点,不能度量,不能比较大小.(3)直线是向两方无限延伸的,无端点,不可度量,不能比较大小.(4)线段、射线、直线都没有粗细.2.表示方法:如图1、图2、图3,线段、射线、直线的表示方法都有两种:它们都可以用两个大写字母表示,也可以一个小写字母表示.要点诠释:(1)从表示方法上看,虽然它们都可以用一个小写字母表示,也可以用两个大写字母表示,但直线取得是直线上任意两点的字母,线段用的是两个端点的字母,射线用的是一个端点和任意一点的字母,而直线和线段的两个大写字母没有顺序之分,但射线的两个大写字母有顺序之分,第一个大写字母必须是表示端点.即端点相同,而延伸方向不同,表示不同的射线.如下图4中射线OA,射线OB是不同的射线;端点相同且延伸方向也相同的射线,表示同一条射线.如下图5中射线OA、射线OB、射线OC都表示同一条射线.图4图5(2)表示直线、射线与线段时,勿忘在字母的前面写上“直线”“射线”“线段”字样.3.线段、射线、直线的区别与联系线段射线直线图示表示方法线段AB或线段a射线OA或射线a直线AB或直线a端点两个一个无长度可度量不可度量不可度量延伸性不向两方延伸向一方无限延伸向两方无限延伸要点二、基本性质1.直线的性质:经过两点有且只有一条直线.简单说成:两点确定一条直线.要点诠释:(1)点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点.如图6中,点O在直线l上,也可以说成是直线l经过点O;②点在直线外,或者说直线不经过这个点.如图6中,点P在直线l外,也可以说直线l不经过点P.(2)两条不同的直线相交只有一个交点.2.线段的基本性质:两点的所有连线中,线段最短.简记为:两点之间,线段最短.如图7所示,在A,B两点所连的线中,线段AB的长度是最短的.要点诠释:(1)连接两点间的线段的长度,叫做这两点的距离.(2)两条线段可能无公共点,可能有一个公共点,也可能有无穷多个公共点.要点三、比较线段的长短1.“作一条线段等于已知线段”的两种方法:法一:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.法二:用刻度尺作一条线段等于已知线段.例如:可以先量出线段a的长度,再画一条等于这个长度的线段.图7要点诠释:几何中连结两点,即画出以这两点为端点的线段.2.线段的比较:(1)度量法:用刻度尺量出两条线段的长度,再比较长短.(2)叠合法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.如下图:3.线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,点C是线段AB的中点,则12ACCBAB,或AB=2AC=2BC.要点诠释:若点C是线段AB的中点,则点C一定在线段AB上.【典型例题】类型一、有关概念1.如图所示,指出图中的直线、射线和线段.【思路点拨】从图上看,A、D、F分别是线段CB、BC、BE的延长线上的点,也就是说,A、D、F三点的位置并不是完全确定的.此时,我们也就能分清楚图中的直线、射线和线段了.【答案与解析】解:直线有一条:直线AD;射线有六条:射线BA、射线BD、射线CA、射线CD、射线BF、射线EF;线段有三条:线段BC、线段BE、线段CE.【总结升华】在表示线段和直线时,两个大写字母的顺序可以颠倒.然而,在叙述线段的延长线的时候,表示线段的两个大写字母的顺序就不能颠倒了,因为线段向一方延伸后就形成了射线(延长部分已不再是线段本身了),而表示射线的两个大写字母的顺序是不能颠倒的,只能用第一个字母表示射线的端点,第二个字母表示射线方向上的任一点.举一反三:【变式】两条不同的直线,要么有一个公共点,要么没有公共点,不能有两个公共点.这是为什么?画图说明.【答案】解:∵过两点有且只有一条直线.(或两点确定一条直线.)∴两条不同的直线,要么有一个公共点,如图(1);要么没有公共点,如图(2);不能有两个公共点.类型二、有关作图2.如图(1)所示,已知线段a,b(a>b),画一条线段,使它等于2a-2b.【答案与解析】解:如图(2)所示:(1)作射线AF;(2)在射线AF上顺次截取AB=BC=a;(3)在线段AC上顺次截取AD=DE=b,则线段EC就是所要求作的线段.【总结升华】用尺规作图时,要熟悉常用的画图语言,注意保留作图痕迹.举一反三:【变式1】下列说法正确的有()①射线与其反向延长线成一条直线;②直线a、b相交于点m;③两直线相交于两个交点;④直线A与直线B相交于点MA.3个B.2个C.1个D.4个【答案】C【变式2】下列说法中,正确的个数有()①已知线段a,b且a-b=c,则c的值不是正的就是负的;②已知平面内的任意三点A,B,C则AB+BC≥AC;③延长AB到C,使BC=AB,则AC=2AB;④直线上的顺次三点D、E、F,则DE+EF=DF.A.1个B.2个C.3个D.4个【答案】C类型三、个(条)数或长度的计算3.根据题意,完成下列填空.如图所示,1l与2l是同一平面内的两条相交直线,它们有1个交点,如果在这个平面内,再画第3条直线3l,那么这3条直线最多有________个交点;如果在这个平面内再画第4条直线4l,那么这4条直线最多可有________个交点.由此我们可以猜想:在同一平面内,6条直线最多可有________个交点,n(n为大于1的整数)条直线最多可有________个交点(用含有n的代数式表示).【答案】3,6,15,(1)2nn.【解析】本题探索过程要分两步:首先要填好3条直线最多可有2+1=3个交点,再类推4条直线,5条直线,6条直线的情形所得到的和式,其次再研究这些和式的规律,得出一般性的结论.【总结升华】n(n为大于1的整数)条直线的交点最多可有:(1)123...(1)2nnn个.举一反三:【变式1】平面上有n个点,最多可以确定条直线.【答案】(1)2nn【变式2】一条直线有n个点,最多可以确定条线段,条射线.【答案】(1)2nn,2n【变式3】一个平面内有三条直线,会出现几个交点?【答案】0个,1个,2个,或3个.4.已知线段AB=14cm,在直线AB上有一点C,且BC=4cm,M是线段AC的中点,求线段AM的长.【思路点拨】题目中只说明了A、B、C三点在同一直线上,无法判定点C在线段AB上,还是在线段AB外(也就是在线段AB的延长线上).所以要分两种情况求线段AM的长.【答案与解析】解:①当点C在线段AB上时,如图所示.因为M是线段AC的中点,所以12AMAC.又因为AC=AB-BC,AB=14cm,BC=4cm,所以1()2AMABBC1(144)5(cm)2.②当点C在线段AB的延长线上时,如图所示.因为M是线段AC的中点,所以12AMAC.又因为AC=AB+BC,AB=14cm,BC=4cm,所以1()2AMABBC9(cm).所以线段AM的长为5cm或9cm.【总结升华】在解答没有给出图形的问题时,一定要审题,要全面考虑所有可能的情况,即当我们面临的教学问题无法确定是哪种情形时,就要分类讨论.举一反三:【变式】(武汉武昌区期末联考)如图所示,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是-10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)问运动多少秒时,BC=8(单位长度)(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是________(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式3BDAPPC.若存在,求线段PD的长;若不存在,请说明理由.【答案】解:(1)点B在数轴上表示的数是-8,设运动t秒时,BC=8(单位长度),则:①当点B在点C的左边时,6t+8+2t=24t=2(秒)②当点B在点C的右边时,6t-8+2t=24t=4(秒)答:当t等于2秒或4秒时,BC=8(单位长度)(2)由(1)知:当t=2(秒)时,B点坐标为:-8+6t=﹣8+6×2=4(单位长度)当t=4(秒)时,B点坐标为:-8+6t=﹣8+6×4=16(单位长度)所以答案为:4或16(3)存在,若存在,则有:BD=AP+3PC,设运动时间为t(秒),则:1°当t=3时,点B与点C重合,点P在线段AB上,O<PC≤2且BD=CD=4,AP+3PC=AB+2PC=2+2PC所以:2+2PC=4,解得:PC=1∴此时,PD=52°当1334t时,点C在点A与点B之间,O<PC<2①点P在线段AC上时.BD=CD-BC=4-BCAP+3PC=AC+2PC=AB-BC+2PC=2-BC+2PC由4-BC=2-BC+2PC,可得:PC=1,此时PD=5.②点P在线段BC上时BD=CD-BC=4-BC,AP+3PC=AC+4PC=AB-BC+4PC=2-BC+4PC由4-BC=2-BC+4PC,可得:12PC,此时72PD3°当134t时,点A与在点C重合,0<PC≤2BD=CD-AB=2,AP+3PC=4PC由2=4PC,可得:12PC,此时72PD4°当13742t时,0<PC<4BD=CD-BC=4-BC,AP+3PC=AB-BC+4PC=2-BC+4PC由4-BC=2-BC+4PC,可得:12PC,此时72PD综上可得:存在此关系式,且PD的长为5或72.类型四、路程最短问题5.如图所示,某公司员工分别住A、B、C三个住宅区,A区有30人,B区有15人,C区有10人.三个区在同一条直线上,该公司的接送车打算在此间设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在哪个区?【答案与解析】解:所有员工步行到停靠点A区的路程之和为:0×30+100×15+(100+200)×10=0+1500+3000=4500(m);所有员工步行到停靠点B区的路程之和为:100×30+0×15+200×10=3000+0+2000=5000(m);所有员工步行到停靠点C区的路程之和为:(100+200)×30+15×200+10×0=9000+3000+0=12000(m).因为4500<5000<12000,所以所有员工步行到停靠点A区的路程之和最小,所以停靠点的位置应设在A.【总结升华】本题是线段的概念在现实中的应用,根据题意分别计算停靠点分别在各点时员工步行的路程和,选择最小的即可得解.举一反三:【变式】如图,从A到B最短的路线是().A.A-G-E-BB.A-C-E-BC.A-D-G-E-BD.A-F-E-B【答案】D
本文标题:线段、射线、直线(提高)知识讲解
链接地址:https://www.777doc.com/doc-5558491 .html