您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > (课件)25.3解直角三角形3(仰角与俯角)
三边之间关系锐角之间关系边角之间关系(以锐角A为例)a2+b2=c2(勾股定理)∠A+∠B=90ºABBCAA斜边的对边sinABACAA斜边的邻边cosACBCAAA的邻边的对边tanBCACAAA的对边的邻边cot仰角和俯角在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;水平线视线视线铅垂线仰角俯角从上往下看,视线与水平线的夹角叫做俯角.例1在升旗仪式上,一位同学站在离旗杆24米处,行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30度,若两眼离地面1.5米,则旗杆的高度是否可求?若可求,求出旗杆的高,若不可求,说明理由.(精确到0.1米).A30度24米1.5米CDEBA90度,中在ABERt解:AEBBEABtan30tanBE3324A241.5DEBC30°)(38米BCABAC)(4.155.138米答:旗杆的高为15.4米。90°BEABAEBtanA水平线地面CBACB2、如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地平面控制点B的俯角=200,求飞机A到控制点B的距离.(精确到1米)ACB解在Rt△ABC中,AC=1200,α=200ABACsin350920sin1200sinACAB所以飞机A到控制点B的距离约3509米.3、小玲家对面新造了一幢图书大厦,小玲在自家窗口测得大厦顶部的仰角和大厦底部的俯角(如图所示),量得两幢楼之间的距离为32m,问大厦有多高?(结果精确到1m)4629m?46ABCC29DA32m32m46ABCC29DA解:在ΔABC中,∠ACB=900∠CAB=460AC=32mACDCCADtan∴BD=BC+CD≈33.1+17.7≈51答:大厦高BD约为51m.ACBCCABtan7.1729tanACDC1.3346tanACBC在ΔADC中∠ACD=900∵∠CAD=290AC=32m·4、一位同学测河宽,如图,在河岸上一点A观测河对岸边的一小树C,测得AC与河岸边的夹角为450,沿河岸边向前走200米到达B点,又观测河对岸边的小树C,测得BC与河岸边的夹角为300,问这位同学能否计算出河宽?若不能,请说明理由;若能,请你计算出河宽.3045ABC200DB30DC45ADC播放停止B30DC45ADC解这位同学能计算出河宽.在Rt△ACD中,设CD=x,由∠CAD=450,则CD=AD=x.在Rt△BCD中,AB=200,则BD=200+X,由∠CBD=300,则tan300=即解得所以河宽为BDCD20033xx.)1003100(米1003100xB30DC45ADC已知斜边求直边,已知直边求直边,已知两边求一边,已知两边求一角,已知锐角求锐角,已知直边求斜边,计算方法要选择,正弦余弦很方便;正切余切理当然;函数关系认真选;勾股定理最方便;互余关系要记牢;用除还需正余弦;能用乘时不用除.优选关系式
本文标题:(课件)25.3解直角三角形3(仰角与俯角)
链接地址:https://www.777doc.com/doc-5595269 .html