您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中数学人教A版选修23第三章统计案例32学业分层测评Word版含答案
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.通过对K2的统计量的研究得到了若干个临界值,当K2≤2.706时,我们认为()A.在犯错误的概率不超过0.05的前提下认为X与Y有关系B.在犯错误的概率不超过0.01的前提下认为X与Y有关系C.没有充分理由认为X与Y有关系D.不能确定【解析】∵K2≤2.706,∴没有充分理由认为X与Y有关系.【答案】C2.下列关于等高条形图的叙述正确的是()A.从等高条形图中可以精确地判断两个分类变量是否有关系B.从等高条形图中可以看出两个变量频数的相对大小C.从等高条形图中可以粗略地看出两个分类变量是否有关系D.以上说法都不对【解析】在等高条形图中仅能粗略判断两个分类变量的关系,故A错.在等高条形图中仅能够找出频率,无法找出频数,故B错.【答案】C3.分类变量X和Y的列联表如下:y1y2总计x1aba+bx2cdc+d总计a+cb+da+b+c+d则下列说法正确的是()A.ad-bc越小,说明X与Y关系越弱B.ad-bc越大,说明X与Y关系越弱C.(ad-bc)2越大,说明X与Y关系越强D.(ad-bc)2越接近于0,说明X与Y关系越强【解析】对于同一样本,|ad-bc|越小,说明X与Y之间关系越弱;|ad-bc|越大,说明X与Y之间的关系越强.【答案】C4.利用独立性检验对两个分类变量是否有关系进行研究时,若有99.5%的把握认为事件A和B有关系,则具体计算出的数据应该是()A.k≥6.635B.k6.635C.k≥7.879D.k7.879【解析】有99.5%的把握认为事件A和B有关系,即犯错误的概率为0.5%,对应的k0的值为7.879,由独立性检验的思想可知应为k≥7.879.【答案】C5.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下表的列联表:男女总计爱好402060不爱好203050总计6050110由K2=nad-bc2a+bc+da+cb+d算得,k=110×40×30-20×20260×50×60×50≈7.8.附表:P(K2≥k0)0.0500.0100.001k03.8416.63510.828参照附表,得到的正确结论是()A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”【解析】由k≈7.8及P(K2≥6.635)=0.010可知,在犯错误的概率不超过1%的前提下认为“爱好该项运动与性别有关”,也就是有99%以上的把握认为“爱好该项运动与性别有关”.【答案】C二、填空题6.在对某小学的学生进行吃零食的调查中,得到如下表数据:吃零食不吃零食总计男学生273461女学生122941总计3963102根据上述数据分析,我们得出的K2的观测值k约为________.【导学号:97270063】【解析】由公式可计算得k=102×27×29-34×12239×63×61×41≈2.334.【答案】2.3347.为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同剂量的电离辐射照射小白鼠,在照射14天内的结果如表所示:死亡存活总计第一种剂量141125第二种剂量61925总计203050进行统计分析时的统计假设是________.【解析】根据独立性检验的基本思想,可知类似于反证法,即要确认“两个分量有关系”这一结论成立的可信程度,首先假设该结论不成立.对于本题,进行统计分析时的统计假设应为“小白鼠的死亡与电离辐射的剂量无关”.【答案】小白鼠的死亡与电离辐射的剂量无关8.在吸烟与患肺病是否相关的判断中,有下面的说法:①若K2的观测值k6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有99%的可能患有肺病;③从独立性检验可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有5%的可能性使得推断错误.其中说法正确的是________.(填序号)【解析】K2是检验吸烟与患肺病相关程度的量,是相关关系,而不是确定关系,是反映有关和无关的概率,故说法①不正确;说法②中对“确定容许推断犯错误概率的上界”理解错误;说法③正确.【答案】③三、解答题9.用两种检验方法对某食品做沙门氏菌检验,结果如下表.阳性阴性总计荧光抗体法1605165常规培养法264874总计18653239附:P(K2≥k0)0.0100.0050.001k06.6357.87910.828(1)利用图形判断采用荧光抗体法与检验结果呈阳性是否有关系;(2)能否在犯错误的概率不超过0.001的前提下认为采用荧光抗体法与检验结果呈阳性有关系?【解】(1)作出等高条形图如图所示,由图知采用荧光抗体法与检验结果呈阳性有关系.(2)通过计算可知K2=nad-bc2a+bc+da+cb+d≈113.1846.而查表可知,因为P(K2≥10.828)≈0.001,而113.1846远大于10.828,所以在犯错误的概率不超过0.001的前提下认为采用荧光抗体法与检验结果呈阳性有关系.10.有人发现一个有趣的现象,中国人的邮箱里含有数字比较多,而外国人邮箱名称里含有数字比较少,为了研究国籍和邮箱名称里含有数字的关系,他收集了124个邮箱名称,其中中国人的64个,外国人的60个,中国人的邮箱中有43个含数字,外国人的邮箱中有27个含数字.(1)根据以上数据建立2×2列联表;(2)他发现在这组数据中,外国人邮箱里含数字的也不少,他不能断定国籍和邮箱名称里含有数字是否有关,你能帮他判断一下吗?【解】(1)2×2的列联表:中国人外国人总计有数字432770无数字213354总计6460124(2)假设“国籍和邮箱名称里与是否含有数字无关”.由表中数据得k=124×43×33-27×21270×54×64×60≈6.201.因为k5.024,所以有理由认为假设“国籍和邮箱名称里与是否含有数字无关”是不合理的,即在犯错误的概率不超过0.025的前提下认为“国籍和邮箱名称里与是否含有数字有关”.[能力提升]1.对两个分类变量A,B,下列说法中正确的个数为()①A与B无关,即A与B互不影响;②A与B关系越密切,则K2的值就越大;③K2的大小是判定A与B是否相关的唯一依据.A.1B.2C.3D.0【解析】①正确,A与B无关即A与B相互独立;②不正确,K2的值的大小只是用来检验A与B是否相互独立;③不正确,也可借助等高条形图等.故选A.【答案】A2.(2016·晋江市季延中学期中)某研究所为了检验某血清预防感冒的作用,把500名使用了该血清的志愿者与另外500名未使用该血清的志愿者一年中的感冒记录作比较,提出假设H:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K2≈3.918,经查临界值表知P(K2≥3.841)≈0.05.则下列叙述中正确的是()A.有95%的把握认为“这种血清能起到预防感冒的作用”B.若有人未使用该血清,那么他一年中有95%的可能性得感冒C.这种血清预防感冒的有效率为95%D.这种血清预防感冒的有效率为5%【解析】K2≈3.9183.841,因此有95%的把握认为“这种血清能起到预防感冒的作用”,故选A.【答案】A3.为研究某新药的疗效,给100名患者服用此药,跟踪调查后得下表中的数据:无效有效总计男性患者153550女性患者64450总计2179100设H:服用此药的效果与患者的性别无关,则K2的观测值k≈________(小数点后保留一位有效数字),从而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为________.【解析】由公式计算得K2的观测值k≈4.9.∵k3.841,∴我们有95%的把握认为服用此药的效果与患者的性别有关,从而有5%的可能性出错.【答案】4.95%4.(2016·潍坊高二检测)为了研究玉米品种对产量的影响,某农科院对一块试验田种植的一批玉米共10000株的生长情况进行研究,现采用分层抽样方法抽取50株作为样本,统计结果如下:高茎矮茎总计圆粒111930皱粒13720总计242650(1)现采用分层抽样的方法,从该样本所含的圆粒玉米中取出6株玉米,再从这6株玉米中随机选出2株,求这2株之中既有高茎玉米又有矮茎玉米的概率;(2)根据对玉米生长情况作出的统计,是否有95%的把握认为玉米的圆粒与玉米的高茎有关?【解】(1)依题意,取出的6株圆粒玉米中含高茎2株,记为a,b;矮茎4株,记为A,B,C,D,从中随机选取2株的情况有如下15种:aA,aB,aC,aD,bA,bB,bC,bD,ab,AB,AC,AD,BC,BD,CD.其中满足题意的共有aA,aB,aC,aD,bA,bB,bC,bD,共8种,则所求概率为P=815.(2)根据已知列联表,得k=50×11×7-13×19230×20×24×26≈3.8603.841,即有95%的把握认为玉米的圆粒与玉米的高茎有关.
本文标题:高中数学人教A版选修23第三章统计案例32学业分层测评Word版含答案
链接地址:https://www.777doc.com/doc-5782740 .html