您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高二数学人教选修12同步练习11独立性检验Word版含解析
第一章统计案例§1.1独立性检验一、基础过关1.下面是一个2×2列联表:y1y2总计x1a2173x282533总计b46则表中a、b处的值分别为()A.94、96B.52、50C.52、60D.54、522.在2×2列联表中,四个变量的取值n11,n12,n21,n22应是()A.任意实数B.正整数C.不小于5的整数D.非负整数3.如果有99%的把握认为“x与y有关系”,那么χ2满足()A.χ26.635B.χ2≥5.024C.χ2≥7.879D.χ23.8414.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()A.若χ26.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病B.从独立性检验可知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病C.若从χ2统计量中得出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误D.以上三种说法都不正确5.某高校“统计初步”课程的教师随机调查了一些学生,具体数据如下表所示,为了判断选修统计专业是否与性别有关系,根据表中数据,得到χ2=50×13×20-10×7223×27×20×30≈4.844,因为4.8443.841.所以选修统计专业与性别有关系,那么这种判断出错的可能性为________.没选统计专业选统计专业男1310女720二、能力提升6.在2×2列联表中,两个分类变量有关系的可能性越大,相差越大的两个比值为()A.n11n11+n12与n21n21+n22B.n11n21+n22与n21n11+n12C.n11n11+n22与n21n12+n21D.n11n12+n22与n21n11+n217.在一项打鼾与患心脏病的调查中,共调查了1671人,经过计算得χ2=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的(有关、无关).8.在使用独立性检验时,下列说法正确的个数为______.①对事件A与B的检验无关时,两个事件互不影响;②事件A与B关系越密切,则χ2就越大;③χ2的大小是判定事件A与B是否相关的唯一根据;④若判定两事件A与B有关,则A发生B一定发生.9.为研究某新药的疗效,给50名患者服用此药,跟踪调查后得下表中的数据:无效有效合计男性患者153550女性患者64450合计2179100计算χ2≈______,从而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为______.10.某县对在职的71名高中数学教师就支持新的数学教材还是支持旧的数学教材做了调查,结果如下表所示:支持新教材支持旧教材合计教龄在15年以上的教师122537教龄在15年以下的教师102434合计224971根据此资料,你是否认为教龄的长短与支持新的数学教材有关?11.在一次天气恶劣的飞行航程中,调查了男女乘客在飞机上晕机的情况:男乘客晕机的有24人,不晕机的有31人;女乘客晕机的有8人,不晕机的有26人.请你根据所给数据判定:在天气恶劣的飞行航程中,男乘客是否比女乘客更容易晕机?12.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.(1)根据以上数据建立一个2×2列联表;(2)判断性别与休闲方式是否有关系.三、探究与拓展13.某教育机构为了研究人具有大学专科以上学历(包括大学专科)和对待教育改革态度的关系,随机抽取了392名成年人进行调查,所得数据如下表所示:积极支持教育改革不太赞成教育改革合计大学专科以上学历39157196大学专科以下学历29167196合计68324392对于教育机构的研究项目,根据上述数据能得出什么结论?答案1.C2.C3.A4.C5.5%6.A7.有关8.19.4.8825%10.解由公式得χ2=nn11n22-n12n212n1+n2+n+1n+2=71×12×24-25×10237×34×22×49≈0.08.∵χ23.841.∴我们没有理由说教龄的长短与支持新的数学教材有关.11.解根据题意,列出2×2列联表如下:晕机不晕机合计男乘客243155女乘客82634合计325789由公式可得χ2=89×24×26-31×8255×34×32×57≈3.6893.841,故我们没有理由认为“在天气恶劣的飞行航程中,男乘客比女乘客更容易晕机”.12.解(1)列联表如下:休闲方式性别看电视运动合计女432770男213354合计6460124(2)χ2=124×43×33-27×21270×54×64×60≈6.201,∵χ23.841且χ26.635.∴有95%的把握认为性别与休闲方式有关.13.解χ2=392×39×167-157×292196×196×68×324≈1.78.因为1.783.841,所以我们没有理由说人具有大学专科以上学历(包括大学专科)和对待教育改革态度有关.
本文标题:高二数学人教选修12同步练习11独立性检验Word版含解析
链接地址:https://www.777doc.com/doc-5785153 .html