您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 3.1.3概率的基本性质教案
13.1.3概率的基本性质一、教学目标1、知识与技能:(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;(2)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B).(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.2、过程与方法:通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类化与归纳的数学思想。3、情感态度与价值观:通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。二、教学重难点教学重点:概率的加法公式及其应用,事件的关系与运算。教学难点:概率的加法公式及其应用,事件的关系与运算,概率的几个基本性质三、教学过程(一)创设情境1.两个集合之间存在着包含与相等的关系,如{2,4}С{2,3,4,5},{1,3}={3,1}.另外,集合之间还可以进行交、并、补运算.2.在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},……师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗?你还记得子集、等集、交集、并集和补集的含义及其符号表示吗?我们可以把一次试验可能出现的结果看成一个集合,那么必然事件对应全集,随机事件对应子集,不可能事件对应空集,从而可以类比集合的关系与运算,分析事件之间的关系与运算,使我们对概率有进一步的理解和认识.二、新知探究1.事件的关系与运算思考:在掷骰子试验中,我们用集合形式定义如下事件:C1={出现1点},C2={出现2点},C3={出现3点},C4={出现4点},C5={出现5点},C6={出现6点},D1={出现的点数不大于1},D2={出现的点数大于4},D3={出现的点数小于6},E={出现的点数小于7},2F={出现的点数大于6},G={出现的点数为偶数},H={出现的点数为奇数},等等.你能写出这个试验中出现其它一些事件吗?类比集合与集合的关系,运算,你能发现它们之间的关系和运算吗?上述事件中哪些是必然事件?哪些是随机事件?哪些是不可能事件?(1)显然,如果事件C1发生,则事件H一定发生,这时我们说事件H包含事件C1,记作HC1.一般地,对于事件A和B,如果事件A发生时,事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)记作BA(或AB);与集合类比,可用如图表示。不可能事件记作,任何事件都包含不可能事件.(2)如果C1发生,那么事件D1一定发生,反过来也对,这时我们说这两个事件相等,记作C1=D1.一般地,若BA,且AB,则称事件A与事件B相等,记作A=B.(3)若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件),记作A∪B(或A+B).例如,在掷骰子的试验中,事件C1∪C5表示出现1点或5点这个事件,即C1∪C5={出现1点或5点}.(4)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件),记作A∩B(或AB).例如,在掷骰子的试验中D2∩D3=C4.(5)若A∩B为不可能事件,即A∩B=,那么称事件A与事件B互斥.其含义是:事件A与事件B在任何一次试验中不会同时发生.3例如,上述试验中的事件C1与事件C2互斥,事件G与事件H互斥。(6)若A∩B为不可能事件,A∪B为必然事件,则称事件A与事件B互为对立事件,其含义是:事件A与事件B有且只有一个发生.在上述试验中,GH为不可能事件,GH为必然事件,所以G与H互为对立事件。思考:事件A与事件B的和事件、积事件,分别对应两个集合的并、交,那么事件A与事件B互为对立事件,对应的集合A、B是什么关系?集合A与集合B互为补集.思考:若事件A与事件B相互对立,那么事件A与事件B互斥吗?反之,若事件A与事件B互斥,那么事件A与事件B相互对立吗?2.概率的几个基本性质思考1:概率的取值范围是什么?必然事件、不可能事件的概率分别是多少?0≤P(A)≤1;必然事件的概率是1.在掷骰子试验中,E={出现的点数小于7},因此P(E)=1.不可能事件的概率是0.如在掷骰子试验中,F={出现的点数大于6},因此P(F)=0.思考2:如果事件A与事件B互斥,则事件A∪B发生的频数与事件A、B发生的频数有什么关系?频率fn(A∪B)与fn(A)、fn(B)有什么关系?进一步得到P(A∪B)与P(A)、P(B)有什么关系?若事件A与事件B互斥,则A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,fn(A∪B)=fn(A)+fn(B),由此得到概率的加法公式:若事件A与事件B互斥,则P(A∪B)=P(A)+P(B).思考3:如果事件A与事件B互为对立事件,则P(A∪B)的值为多少?P(A∪B)与P(A)、P(B)有什么关系?由此可得什么结论?若事件A与事件B互为对立事件,则P(A)+P(B)=1.思考4:如果事件A与事件B互斥,那么P(A)+P(B)与1的大小关系如何?P(A)+P(B)≤1.三、典型例题例1如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是14,取到方片(事件B)的概率是14,问:(l)取到红色牌(事件C)的概率是多少?(2)取到黑色牌(事件D)的概率是多少?解:(1)因为C=A∪B,且A与B不会同时发生,所以A与B是互斥事件,根据概率的加法公式,得P(C)=P(A∪B)=P(A)+P(B)=12.4(2)C与D也是互斥事件,又由于C∪D为必然事件,所以C与D互为对立事件,所以P(D)=1-P(C)=12.点评:利用互斥事件、对立事件的概率性质求概率例2某射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?事件A:命中环数大于7环;事件B:命中环数为10环;事件C:命中环数小于6环;事件D:命中环数为6、7、8、9、10环.事件A与事件C互斥,事件B与事件C互斥,事件C与事件D互斥且对立.点评:学会判断互斥、对立关系四、课堂练习课本第121页1,3,5五、课堂小结1.事件的各种关系与运算,可以类比集合的关系与运算,互斥事件与对立事件的概念的外延具有包含关系,即{对立事件}{互斥事件}.2.在一次试验中,两个互斥事件不能同时发生,它包括一个事件发生而另一个事件不发生,或者两个事件都不发生,两个对立事件有且仅有一个发生.3.事件(A+B)或(A∪B),表示事件A与事件B至少有一个发生;事件(AB)或A∩B,表示事件A与事件B同时发生.4.概率加法公式是对互斥事件而言的,一般地,P(A∪B)≤P(A)+P(B).五、作业布置课本第121页第2、4页,123页第1题.
本文标题:3.1.3概率的基本性质教案
链接地址:https://www.777doc.com/doc-5859082 .html