您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 迎战2012届高考物理一轮复习课件 专题6 动量和能量
2020/6/152020/6/152020/6/15考情分析预测本专题是力和运动专题的拓展和深化.首先,从知识的内在联系上,动能定理、动量定理均可由牛顿第二定律和运动学公式推导得出;其次,从分析问题的思路上,力和运动专题侧重于从动力学角度分析匀变速运动过程或某一瞬时状态,而本专题则开辟了动量观点、能量观点分析物理问题的途径,且研究范围从匀变速运动拓展到非匀变速运动问题,研究对象也从个体拓展到物体组或系统.2020/6/15由于动量守恒定律能把系统中两个状态直接联系起来,所以动量观点犹如解题的时空隧道;而能量观点解题则更是与动力学观点和动量观点并行的一条绿色通道!动量守恒定律和能量守恒定律作为自然界中普遍适用的基本规律,是高中物理主干知识,更是高考考查的重点和热点.在近年高考试题中,涉及动量、能量的问题经常综合平抛运动、圆周运动、热学、电磁学、原子物理等考点以计算题的形式出现,一般出现在理科综合卷24题的位置上,为中偏难的题目.2020/6/15预测2011年高考涉及动量、能量的考题主要表现为以下几种形式:1、涉及动量、能量基本概念或机车启动问题的选择题;2、以体育竞技项目为背景的动力学和能量的综合题;3、以能量守恒为核心考点并涉及弹簧的力学综合题;4、以动量守恒为核心考点并涉及碰撞的力学综合题.2020/6/15※一.功和能※二.功能关系※三.应用动能定理、动量定理、动量守恒定律的注意点例1例2例3例4※四.碰撞的分类※五.弹性碰撞的公式例52020/6/15一功和能功能功能关系功:W=FScos(只适用恒力的功)功率:动能:221mvEk势能:mghEp机械能:E=EP+EK=mgh+1/2mv2动能定理:2022121mvmvWt合机械能守恒定律2222112121mvmghmvmghcosFvtWP功是能量转化的量度——W=△EEp′=1/2kx22020/6/15二.功能关系--------功是能量转化的量度⑴重力所做的功等于重力势能的减少⑵电场力所做的功等于电势能的减少⑶弹簧的弹力所做的功等于弹性势能的减少⑷合外力所做的功等于动能的增加⑸只有重力和弹簧的弹力做功,机械能守恒⑹重力以外的力所做的功等于机械能的增加⑺克服一对滑动摩擦力所做的净功等于机械能的减少ΔE=fΔS(ΔS为相对位移)⑻克服安培力所做的功等于感应电能的增加2020/6/15三.应用动能定理分析一个具体过程时,要做到三个“明确”,即明确研究对象(研究哪个物体的运动情况),明确研究过程(从初状态到末状态)及明确各个力做功的情况。还要注意是合力的功。应用动量定理、动量守恒定律的注意点:要注意研究对象的受力分析,研究过程的选择,还要特别注意正方向的规定。应用动量守恒定律还要注意适用条件的检验。应用动量定理要注意是合外力。2020/6/15例1.关于机械能守恒,下面说法中正确的是[]A.物体所受合外力为零时,机械能一定守恒B.在水平地面上做匀速运动的物体,机械能一定守恒C.在竖直平面内做匀速圆周运动的物体,机械能一定守恒D.做各种抛体运动的物体,若不计空气阻力,机械能一定守恒D练习.按额定功率行驶的汽车,所受地面的阻力保持不变,则[]A.汽车加速行驶时,牵引力不变,速度增大B.汽车可以做匀加速运动C.汽车加速行驶时,加速度逐渐减小,速度逐渐增大D.汽车达到最大速度时,所受合力为零CD2020/6/15例2.如图示的装置中,木块与水平面的接触是光滑的,子弹沿水平方向射入木块后留在木块内,将弹簧压缩到最短,现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩到最短的整个过程中()A.动量守恒,机械能守恒B.动量不守恒,机械能守恒C.动量守恒,机械能不守恒D.动量不守恒,机械能不守恒D2020/6/15例3、钢球从高处向下落,最后陷入泥中,如果空气阻力可忽略不计,陷入泥中的阻力为重力的n倍,求(1)钢珠在空中下落的高度H与陷入泥中的深度h的比值H∶h=?(2)钢珠在空中下落的时间T与陷入泥中的时间t的比值T∶t=?解:(1)由动能定理,选全过程mg(H+h)-nmgh=0H+h=nh∴H:h=n-1(2)由动量定理,选全过程mg(T+t)-nmgt=0T+t=nt∴T:t=n-1说明:全程分析法是一种重要的物理分析方法,涉及到多个物理过程的题目可首先考虑采用全过程分析2020/6/15例4、如图所示,三块完全相同的木块固定在水平地面上,设速度为v0子弹穿过木块时受到的阻力一样,子弹可视为质点,子弹射出木块C时速度变为v0/2.求:(1)子弹穿过A和穿过B时的速度v1=?v2=?(2)子弹穿过三木块的时间之比t1∶t2∶t3=?V0ABC解:(1)由动能定理:f·3l=1/2·mv02-1/2·m(v0/2)2f·2l=1/2·mv02-1/2·mv22f·l=1/2·mv02-1/2·mv12234/22202020vvvv134/21202020vvvv02012223vvvv2020/6/15(2)由动量定理:ft1=mv0-mv1ft2=mv1–mv2ft3=mv2–mv0/223322223230000211021vvvvvvvvtt12232/2222232/0000022132vvvvvvvvtt)12(:)23(:)32(::321ttt2020/6/15四碰撞的分类完全弹性碰撞——动量守恒,动能不损失(质量相同,交换速度)完全非弹性碰撞——动量守恒,动能损失最大。(以共同速度运动)非完全弹性碰撞—动量守恒,动能有损失。碰撞后的速度介于上面两种碰撞的速度之间.2020/6/15五.弹性碰撞的公式:ABV0静止ABV2ˊV1ˊ由动量守恒得:m1V0=m1V1′+m2V2′由系统动能守恒222211201212121VmVmVm021120212112VmmmVVmmmmV质量相等的两物体弹性碰撞后交换速度.上式只适用于B球静止的情况。2020/6/151.物块m1滑到最高点位置时,二者的速度;2.物块m1从圆弧面滑下后,二者速度3.若m1=m2物块m1从圆弧面滑下后,二者速度如图所示,光滑水平面上质量为m1=2kg的物块以v0=2m/s的初速冲向质量为m2=6kg静止的光滑圆弧面斜劈体。求:例5.m1m2v02020/6/15解:(1)由动量守恒得m1V0=(m1+m2)VV=m1V0/(m1+m2)=0.5m/s(2)由弹性碰撞公式smVmmmVsmVmmmmV/1262222/12626202112021211(3)质量相等的两物体弹性碰撞后交换速度∴v1=0v2=2m/s2020/6/15例6.一传送皮带与水平面夹角为30°,以2m/s的恒定速度顺时针运行。现将一质量为10kg的工件轻放于底端,经一段时间送到高2m的平台上,工件与皮带间的动摩擦因数为μ=0.866,求带动皮带的电动机由于传送工件多消耗的电能。30°vNmgf2020/6/15解:设工件向上运动距离S时,速度达到传送带的速度v,由动能定理可知μmgScos30°–mgSsin30°=0-1/2mv2解得S=0.8m,说明工件未到达平台时,速度已达到v,所以工件动能的增量为△EK=1/2mv2=20J工件重力势能增量为△EP=mgh=200J在工件加速运动过程中,工件的平均速度为v/2,因此工件的位移是皮带运动距离S′的1/2,即S′=2S=1.6m由于滑动摩擦力作功而增加的内能△E为△E=f△S=mgcos30°(S′-S)=60J电动机多消耗的电能为△EK+△EP+△E=280J2020/6/15在光滑水平面上有一静止的物体,现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的恒力乙推这一物体,当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J,则在整个过程中,恒力甲做的功等于焦耳,恒力乙做的功等于焦耳.ABCF甲F乙S解:A---BS=1/2a1t2=F1t2/2mv=at=F1t/mvB---C—A-S=vt-1/2a2t2=F1t2/m-F2t2/2m∴F2=3F1A—B—C—A由动能定理F1S+F2S=32∴W1=F1S=8JW2=F2S=24J8J24J2020/6/15练习1、一物体静止在光滑水平面,施一向右的水平恒力F1,经t秒后将F1换成水平向左的水平恒力F2,又经过t秒物体恰好回到出发点,在这一过程中F1、F2对物体做的功分别是W1、W2,求:W1∶W2=?解一:画出运动示意图,由动量定理和动能定理:v1v2F1F2F1t=mv1(1)F2t=-mv2-mv1(2)F1S=1/2·mv12(3)F2S=1/2·mv22-1/2·mv12(4)(1)/(2)F1/F2=v1/(v1+v2)(3)/(4)F1/F2=v12/(v12-v22)化简得v2=2v1(5)由动能定理:W1=1/2·mv12W2=1/2·mv22-1/2·mv12=3×1/2·mv12∴W2=3W12020/6/15v1v2F1F2解法二、将⑤代入①/②得F1∶F2=1∶3W2/W1=F1S/F2S=1∶3解法三、用平均速度:S=vt∴v1v2=v1/2=(-v2+v1)/2∴v2=2v1由动能定理:W1=1/2·mv12W2=1/2·mv22-1/2·mv12=3/2×mv12∴W2=3W12020/6/15例7、如图所示,质量为M的小车左端放一质量为m的物体.物体与小车之间的摩擦系数为μ,现在小车与物体以速度v0在水平光滑地面上一起向右匀速运动.当小车与竖直墙壁发生弹性碰撞后,物体在小车上向右滑移一段距离后一起向左运动,求物体在小车上滑移的最大距离.Mmv0解:小车碰墙后速度反向,由动量守恒定律Mmv0v0(M+m)V=(M-m)v0最后速度为V,由能量守恒定律MmVV1/2(M+m)v02-1/2(M+m)V2=μmgSgmMMS)(2202020/6/15例8.如图所示,质量为M的火箭,不断向下喷出气体,使它在空中保持静止.如果喷出气的速度为υ,则火箭发动机的功率为()(A)Mgυ;(B)Mgυ;(C)Mυ2;(D)无法确定.2121解:对气体:FΔt=Δmv对火箭:F=Mg对气体:PΔt=1/2×Δmv2=1/2×FΔtv∴P=1/2×Fv=1/2×MgvB2020/6/15如下图所示,劲度系数为k1的轻弹簧两端分别与质量为m1、m2的物块1、2拴接,劲度系数为k2的轻弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。现施力将物块1缓缦地坚直上提,直到下面那个弹簧的下端刚脱离桌面,在此过程中,物块2的重力势能增加了,物块1的重力势能增加了________。22212)(kgmmm221211)11)((gkkmmm2020/6/15一传送带装置示意如图,其中传送带经过AB区域时是水平的,经过BC区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD区域时是倾斜的,AB和CD都与BC相切。现将大量的质量均为m的小货箱一个一个在A处放到传送带上,放置时初速为零,经传送带运送到D处,D和A的高度差为h。稳定工作时传送带速度不变,CD段上各箱等距排列,相邻两箱的距离为L。每个箱子在A处投放后,在到达B之前已经相对于传送带静止,且以后也不再滑动(忽略经BC段时的微小滑动)。已知在一段相当长的时间T内,共运送小货箱的数目为N。这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦。求电动机的平均输出功率P。BADC2020/6/15解析:以地面为参考系(下同),设传送带的运动速度为v0,在水平段运输的过程中,小货箱先在滑动摩擦力作用下做匀加速运动,设这段路程为s,所用时间为t,加速度为a,则对小箱有:S=1/2·at2v0=at在这段时间内,传送带运动的路程为:S0=v0t由以上可得:S0=2S用f表示小箱与传送带之间的
本文标题:迎战2012届高考物理一轮复习课件 专题6 动量和能量
链接地址:https://www.777doc.com/doc-5912428 .html