您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 曲柄轴的强度设计、疲劳强度校核及刚度计算
材料力学课程设计设计计算说明书设计题目:曲柄轴的强度设计、疲劳强度校核及刚度计算序号:160题号:10-16教学号:专业:土木工程(路桥)姓名:指导教师:1目录一、材料力学课程设计的目的—————————2二、材料力学课程设计的任务和要求——————3三、设计计算说明书的要求——————————3四、分析讨论及说明部分的要求————————4五、程序计算部分的要求———————————4六、设计题目————————————————5七、设计内容————————————————6(一)画出曲柄轴的内力图------------------7(二)设计曲柄颈直径d,主轴颈直径D-------9(三)校核曲柄臂的强度--------------------10(四)校核主轴颈的疲劳强度---------------14(五)用能量法计算A截面的转角-----------15(六)计算机程序-------------------------17八、设计体会——————————————----21九、参考文献——————————————----212一、课程设计的目的材料力学课程设计的目的是在于系统学习材料力学后,能结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题之目的。同时,可以使我们将材料力学的理论和现代计算方法及手段融为一体。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题,解决问题的能力;既能对以前所学的知识(高等数学、工程图学、理论力学、算法语言、计算机和材料力学等)的综合应用,又为后继课程(机械设计、专业课等)得学习打下基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。1、使所学的材料力学知识系统化,完整化。2、在系统全面复习的基础上,运用材料力学知识解决工程实际问题。3、由于选课力求综合专业实际,因而课程设计可以把材料力学知识与专业需要结合起来。4、综合运用以前所学的各门课程的知识(高等数学、工程图学、理论力学、算法语言等),使相关学科的知识有机地联系起来。3二、课程设计的任务和要求要系统复习材料力学课程的全部基本理论和方法,独立分析、判断设计题目的已知条件和所求问题,画出受力分析计算简图和内力图,列出理论依据并导出计算公式,独立编制计算程序,通过计算机给出计算结果,并完成设计计算说明书。三、设计计算说明书的要求设计计算说明书是该题目设计思想、设计方法和设计结果的说明,要求书写工整,语言简练,条理清晰、明确,表达完整。具体内容应包括:1.设计题目的已知条件、所求及零件图。2.画出构建的受力分析计算简图,按比例标明尺寸、载荷及支座等。3.静不定结构要画出所选择的基本静定系统及与之相应的全部求解过程。4.画出全部内力图,并标明可能的各危险截面。5.危险截面上各种应力的分布规律图及由此判断各危险点处的应力状态图。46.各危险点的主应力大小及主平面位置。7.选择强度理论并建立强度条件。8.列出全部计算过程的理论依据、公式推导过程以及必要的说明。9.对变形及刚度分析并写明所用的能量法计算过程及必要的内力图和单位力图。10.疲劳强度计算部分要说明循环特性,max,min,r,m,a的计算,所查k,ε,β各系数的依据,疲劳强度校核过程及结果,并绘制构件的持久极限曲线。四、分析讨论及说明部分的要求1.分析计算结果是否合理,并讨论其原因、改进措施。2.提出改进设计的初步方案及设想。3.提高强度、刚度及稳定性的措施及建议。五、程序计算部分的要求1.程序框图。2.计算机程序(含必要的语言说明及标示符说明)。3.打印结果(数据结果要填写在设计说明书上)。5六、设计题某柴油机曲轴材料为球墨铸铁(QT400-10),[σ]=120MPa,曲柄臂抽象为矩形(如图),h=1.2D,b/h=2/3(左、右臂尺寸相同),l=1.5e,l4=0.5l。(一)要求:1.画出曲轴的内力图。2.按照强度条件设计主轴颈D和曲轴颈的直径d。3.校核曲柄臂的强度。4.安装飞轮处为键槽,校核主轴颈的疲劳强度,取疲劳安全系数n=2。键槽为端铣加工,轴颈表面为车削加工,τ-1=160MPa,05.0,76.0。5.用能量法计算A端截面的转角y,z。(二)设计数据(表7-12中第16组数据)F/kNW/kNl1/mml2/mml3/mme/mmα(°)206.8360230130100126七、设计内容外力分析在XOY平面内:∑MB=0FAy=213*2*sin*LLLWLaF=3119N(下)∑MA=0FBy=21sin*1*)321(*LLaLFLLLW=5761N(上)在XOZ平面内:∑MB=0FAz=212*cos*LLLaF=7626N(外)∑MA=0FBz=211*cos*LLLaF=11937N(外)7(一)内力图画出内力图。不计弯曲切应力(故未画剪力图),弯矩图画在受压处。根据内力图,确定危险截面。81.对于主轴颈危险点可能是图中D点,则D点处受弯曲和扭转,有:MD1x==1565N·mMD1y=2030N·mMD1z=1061N·m2.曲柄颈中间截面C最危险,受扭转和两向弯曲,有:MCx=610N·mMCy=2898N·mMCz=1123N·m3.曲柄臂受到轴力作用,危险点可能也是图中D或E点,有:MD2x=1565N·mMEx=610N·mMD2y=2030N·mMEy=2288N·mMD2z=1061N·mMEz=936N·mFND=1039NFNE=3119N9(二)设计主轴颈直径D和曲轴颈直径d1.校核主轴颈D①主轴颈的危险截面为D处,进行校核。根据主轴颈的受力状态用第三强度理论计算3r=W1212121zMyMxMDDD≤[]其中W1=332D332D212121zMyMxMDDD≤120MPa求得D≥61.75mm则D=70mm2.校核曲轴颈直径d在曲轴颈上,危险截面位于中间截面C处,对此处进行分析,受两向弯曲和扭转作用。根据受力情况,同样应用第三强度理论进行校核,有:3r=WM=W1222zMyMxMCCC≤[]M=222zMyMxMCCC其中W1=332d求得d≥63.58mm即d=64mm则有D=70mm,d=64mmh=84mm,b=56mm10(三)校核曲柄臂的强度由题可得:h/b=3/2经查表可得,α=0.231β=0.196γ=0.858曲柄臂的危险截面为矩形截面,且受扭转、两向弯曲及轴力作用(不计剪力QF),曲柄臂上的危险截面可能为C端或者E端,分别对其进行检验。①左臂,即检验顶端E处。根据应力分布图可判定出可能的危险点为1D,2D,3D。111D点:1D点处于单向拉伸应力状态=zWzMxWxMAFEEEENE=2266hbzMbhxMhbyFEEA=31.245Mpa[]所以1D点满足强度条件。2D点:2D点处于二向应力状态,存在扭转切应力2hbyME=37.600Mpa2D点的正应力为轴向力和绕z轴的弯矩共同引起的zWzMAFEENE=26hbzMhbyFEA=21.982Mpa由第三强度理论所以2D点满足强度条件。3D点:3D点处于二向应力状态xWxMAFEENE'=bhxMhbyFEA26=9.926Mpa根据第三强度理论223'4'r=65.281Mpa[]所以3D点满足强度条件。即E处截面强度满足条件12②右臂,即检验底端D处。根据应力分布图可判定出可能的危险点为1D,2D,3D。1D点:1D处于单向压缩,正应力为代数和。=WzzMWxxMAFDDND22=28.013MPa[]故1D点安全2D点:2D点有扭转切应力,=22hbyMD=242hbLLzFB=33.360MPa132D点的正应力为轴向力和绕z轴的弯矩共同引起的=WpzMAFDN2=24.387MPa根据第三强度理论2234r=71.870MPa[]故2D点安全3D点:与2D点相类似,正应力为轴向力和绕y轴的弯矩共同引起的,即==28.623MPa=WxxMAFDN2=23.985MPa2234r=62.068MPa[]故3D点安全。即E处截面强度满足条件。综上,曲柄臂满足强度条件14(四)校核主轴颈的疲劳强度由题意查得球墨铸铁ab400查表得20.1k95.0已知MPa160176.005.02n由零件图可知,键槽处有扭转切应力,无弯曲正应力,工作时切应力基本不变,但机器时开时停,可视为脉动循环。WpxMemax=316DxMe=23.23MPa0min2maxma=11.62MPa切应力是动脉循环,用以下公式进行疲劳强度校核makn1=4n=2故安全15(五)用能量法计算A-A截面的转角y,z采用图乘法分别求解A-A截面的转角y,z。1.求z:在截面A加一单位力偶矩zM。并作出单位力偶矩作用下的弯矩图zM与外载荷作用下的弯矩图zM如下(画在受拉一侧):11nnciiiNciziiiiMFEIEA=0.0096rad=0.550︒162.求y:在截面A加一单位力偶矩yM。并作出单位力偶矩作用下的弯矩图yM。与外载荷作用下的弯矩图yM如下(画在受压一侧):查表得196.011''nnciciiiyiiipMMEIGI=0.0036rad=0.206︒17(六)计算机程序#includestdio.h#includemath.h#definePi3.1415926#definen2#definei120e6#defineE150e9intmain()//主函数{intangle,d,D;doubletemps,tempc,Fy,Fz,Mx,e,l,l1,l2,l3,l4,F,FAy,FAz,FBy,FBz,W,Mcz,Mfz,Mhz,Mcy,Mfy,Mhy,Mdx,Mfx,Mx1,My1,Mz1,Mx2,My2,Mz2,DD,g,f,dd,h,b,A,s1,s2,s3,t2,t3,a,sr2,sr3,r,s11,s22,s33,t22,t33,sr22,sr33,tmax,tmin,R,tm,ta,nt,T,Kt,Et,B,pt;printf(请输入F,alfa,W,L1,L2,L3,e\n);printf(F单位为KN,F=);scanf(%lf,&F);printf(W单位为KN,W=);scanf(%lf,&W);printf(L1单位为m,L1=);scanf(%lf,&l1);printf(L2单位为m,L2=);scanf(%lf,&l2);//输入数据printf(L3单位为m,L3=);scanf(%lf,&l3);printf(e单位为m,e=);scanf(%lf,&e);printf(alfa单位为度,alfa=);scanf(%d,&angle);temps=sin(12*Pi/180);tempc=cos(12*Pi/180);Fy=F*temps;//求两个方向分力Fz=F*tempc;Mx=Fz*e;printf(Fy=%lf\nFz=%lf\nMx=%lf\n,Fy,Fz,Mx);FBz=Fz*l1/(l1+l2);FBy=(W*(l1+l2+l3)-Fy*l1)/(l1+l2);FAz=l2*Fz/(l1+l2);//求各点支座反力18FAy=(Fy*l2+W*l3)/(l1+l2);printf(支座反力(单位KN):\nFAy=%lf\nFAz=%lf\nFBy=%lf\nFBz=%lf\n,FAy,FAz,FBy,FBz);l=1.5*e;l4=0.5*l;Mcz=FAy*(l1-l/2);Mfz=W*(l2+l3-l/2)-FBy*(l2-l/2);Mhz
本文标题:曲柄轴的强度设计、疲劳强度校核及刚度计算
链接地址:https://www.777doc.com/doc-5959342 .html