您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2015年武汉市中考数学试卷及答案解析(Word版)
第1页(共13页)2015年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.(3分)(2015•武汉)在实数﹣3,0,5,3中,最小的实数是()A.﹣3B.0C.5D.3考点:实数大小比较.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解答:解:根据实数比较大小的方法,可得﹣3<0<3<5,所以在实数﹣3,0,5,3中,最小的实数是﹣3.故选:A.点评:此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)(2015•武汉)若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣2B.x>﹣2C.x≥2D.x≤2考点:二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于等于0,就可以求解.解答:解:根据题意得:x﹣2≥0,解得x≥2.故选:C.点评:本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.3.(3分)(2015•武汉)把a2﹣2a分解因式,正确的是()A.a(a﹣2)B.a(a+2)C.a(a2﹣2)D.a(2﹣a)考点:因式分解-提公因式法.专题:计算题.分析:原式提取公因式得到结果,即可做出判断.解答:解:原式=a(a﹣2),故选A.点评:此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.4.(3分)(2015•武汉)一组数据3,8,12,17,40的中位数为()A.3B.8C.12D.17考点:中位数.分析:首先把这组数据3,8,12,17,40从小到大排列,然后判断出中间的数是多少,即可判断出这组数据的中位数为多少.解答:解:把3,8,12,17,40从小到大排列,可得3,8,12,17,40,所以这组数据3,8,12,17,40的中位数为12.第2页(共13页)故选:C.点评:此题主要考查了中位数的含义和求法的应用,要熟练掌握,解答此题的关键是要明确:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(3分)(2015•武汉)下列计算正确的是()A.2a2﹣4a2=﹣2B.3a+a=3a2C.3a•a=3a2D.4a6÷2a3=2a2解:A、原式=﹣2a2,错误;B、原式=4a,错误;C、原式=3a2,正确;D、原式=2a3,错误.故选C.6.(3分)(2015•武汉)如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)解:由题意得,△ODC∽△OBA,相似比是,∴=,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选:A.7.(3分)(2015•武汉)如图,是由一个圆柱体和一个长方体组成的几何体.其主视图是()A.B.C.D.解:从正面看下面是一个比较长的矩形,上面是一个比较宽的矩形.故选:B.第3页(共13页)8.(3分)(2015•武汉)下面的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是()A.4:00气温最低B.6:00气温为24℃C.14:00气温最高D.气温是30℃的时刻为16:00解:A、由横坐标看出4:00气温最低是24℃,故A正确;B、由纵坐标看出6:00气温为24℃,故B正确;C、由横坐标看出14:00气温最高31℃;D、由横坐标看出气温是30℃的时刻是12:00,16:00,故D错误;故选:D.9.(3分)(2015•武汉)在反比例函数y=图象上有两点A(x1,y1),B(x2,y2),x1<0<x2,y1<y2,则m的取值范围是()A.m>B.m<C.m≥D.m≤解:∵x1<0<x2时,y1<y2,∴反比例函数图象在第一,三象限,∴1﹣3m>0,解得:m<.故选B.10.(3分)(2015•武汉)如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.2﹣B.+1C.D.﹣1解:连接AD、DG、BO、OM,如图.∵△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,第4页(共13页)∴AD⊥BC,GD⊥EF,DA=DG,DC=DF,∴∠ADG=90°﹣∠CDG=∠FDC,=,∴△DAG∽△DCF,∴∠DAG=∠DCF.∴A、D、C、M四点共圆.根据两点之间线段最短可得:BO≤BM+OM,即BM≥BO﹣OM,当M在线段BO与该圆的交点处时,线段BM最小,此时,BO===,OM=AC=1,则BM=BO﹣OM=﹣1.故选D.二、填空题(共6小题,每小题3分,共18分)请将答案填在答题卡对应题号的位置上.11.(3分)(2015•武汉)计算:﹣10+(+6)=﹣4.考点:有理数的加法.专题:计算题.分析:原式利用异号两数相加的法则计算即可得到结果.解答:解:原式=﹣(10﹣6)=﹣4.故答案为:﹣4.点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.12.(3分)(2015•武汉)中国的领水面积约为370000km2,将数370000用科学记数法表示为3.7×105.解:370000=3.7×105,故答案为:3.7×105.13.(3分)(2015•武汉)一组数据2,3,6,8,11的平均数是6.解:(2+3+6+8+11)÷5=30÷5=6所以一组数据2,3,6,8,11的平均数是6.故答案为:6.14.(3分)(2015•武汉)如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.第5页(共13页)解:由线段OA的图象可知,当0<x<2时,y=10x,1千克苹果的价钱为:y=10,设射线AB的解析式为y=kx+b(x≥2),把(2,20),(4,36)代入得:,解得:,∴y=8x+4,当x=3时,y=8×3+4=28.当购买3千克这种苹果分三次分别购买1千克时,所花钱为:10×3=30(元),30﹣28=2(元).则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.15.(3分)(2015•武汉)定义运算“*”,规定x*y=ax2+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=10.解:根据题中的新定义化简已知等式得:,解得:a=1,b=2,则2*3=4a+3b=4+6=10,故答案为:10.16.(3分)(2015•武汉)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是.解:作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON′中,M′N′==.故答案为.第6页(共13页)三、解答题(共8小题,共72分)下列各题解答应写出文字说明,证明过程或演算过程.17.(8分)(2015•武汉)已知一次函数y=kx+3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)求关于x的不等式kx+3≤6的解集.解:(1)∵一次函数y=kx+3的图象经过点(1,4),∴4=k+3,∴k=1,∴这个一次函数的解析式是:y=x+3.(2)∵k=1,∴x+3≤6,∴x≤3,即关于x的不等式kx+3≤6的解集是:x≤3.18.(8分)(2015•武汉)如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.证明:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.19.(8分)(2015•武汉)一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4.第7页(共13页)(1)随机摸取一个小球,直接写出“摸出的小球标号是3”的概率;(2)随机摸取一个小球然后放回,再随机摸出一个小球,直接写出下列结果:①两次取出的小球一个标号是1,另一个标号是2的概率;②第一次取出标号是1的小球且第二次取出标号是2的小球的概率.解:(1)∵一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4,∴随机摸取一个小球,直接写出“摸出的小球标号是3”的概率为:;(2)画树状图得:则共有16种等可能的结果;①∵两次取出的小球一个标号是1,另一个标号是2的有2种情况,∴两次取出的小球一个标号是1,另一个标号是2的概率为:=;②∵第一次取出标号是1的小球且第二次取出标号是2的小球的只有1种情况,∴第一次取出标号是1的小球且第二次取出标号是2的小球的概率为:.20.(8分)(2015•武汉)如图,已知点A(﹣4,2),B(﹣1,﹣2),平行四边形ABCD的对角线交于坐标原点O.(1)请直接写出点C、D的坐标;(2)写出从线段AB到线段CD的变换过程;(3)直接写出平行四边形ABCD的面积.解:(1)∵四边形ABCD是平行四边形,∴四边形ABCD关于O中心对称,∵A(﹣4,2),B(﹣1,﹣2),∴C(4,﹣2),D(1,2);(2)线段AB到线段CD的变换过程是:线段AB向右平移5个单位得到线段CD;(3)由(1)得:A到y轴距离为:4,D到y轴距离为:1,A到x轴距离为:2,B到x轴距离为:2,第8页(共13页)∴SABCD的可以转化为边长为;5和4的矩形面积,∴SABCD=5×4=20.21.(8分)(2015•武汉)如图,AB是⊙O的直径,∠ABT=45°,AT=AB.(1)求证:AT是⊙O的切线;(2)连接OT交⊙O于点C,连接AC,求tan∠TAC.解:(1)∵∠ABT=45°,AT=AB.∴∠TAB=90°,∴TA⊥AB,∴AT是⊙O的切线;(2)作CD⊥AT于D,∵TA⊥AB,TA=AB=2OA,设OA=x,则AT=2x,∴OT=x,∴TC=(﹣1)x,∵CD⊥AT,TA⊥AB∴CD∥AB,∴==,即==,∴CD=(1﹣)x,TD=2(1﹣)x,∴AD=2x﹣2(1﹣)x=x,∴tan∠TAC===﹣1.22.(10分)(2015•武汉)已知锐角△ABC中,边BC长为12,高AD长为8.第9页(共13页)(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K.①求的值;②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值;(2)若AB=AC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,直接写出正方形PQMN的边长.解:(1)①∵EF∥BC,∴,∴=,即的值是.②∵EH=x,∴KD=EH=x,AK=8﹣x,∵=,∴EF=,∴S=EH•EF=x(8﹣x)=﹣+24,∴当x=4时,S的最大值是24.(2)设正方形的边长为a,①当正方形PQMN的两个顶点在BC边上时,,解得a=.②当正方形PQMN的两个顶点在AB或AC边上时,∵AB=AC,AD⊥BC,∴BD=CD=12÷2=6,∴AB=AC=,∴AB或AC边上的高等于:第10页(共13页)AD•BC÷AB=8×12÷10=∴,解得a=.综上,可得正方形PQMN的边长是或.23.(10分)(2015•武汉)如图,△ABC中,点
本文标题:2015年武汉市中考数学试卷及答案解析(Word版)
链接地址:https://www.777doc.com/doc-6013232 .html