您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > EViews计量经济学实验报告-异方差的诊断及修正
时间地点实验题目异方差的诊断与修正一、实验目的与要求:要求目的:1、用图示法初步判断是否存在异方差,再用White检验异方差;2、用加权最小二乘法修正异方差。二、实验内容根据1998年我国重要制造业的销售利润与销售收入数据,运用EV软件,做回归分析,用图示法,White检验模型是否存在异方差,如果存在异方差,运用加权最小二乘法修正异方差。三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)(一)模型设定为了研究我国重要制造业的销售利润与销售收入是否有关,假定销售利润与销售收入之间满足线性约束,则理论模型设定为:iY=1+2iX+i其中,iY表示销售利润,iX表示销售收入。由1998年我国重要制造业的销售收入与销售利润的数据,如图1:1988年我国重要制造业销售收入与销售利润的数据(单位:亿元)行业名称销售利润Y销售收入X食品加工业187.253180.44食品制造业111.421119.88饮料制造业205.421489.89烟草加工业183.871328.59纺织业316.793862.9服装制造业157.71779.1皮革羽绒制品81.731081.77木材加工业35.67443.74家具制造业31.06226.78造纸及纸制品134.41124.94印刷业90.12499.83文教体育用品54.4504.44石油加工业194.452363.8化学原料制品502.614195.22医药制造业238.711264.1化学纤维制造81.57779.46橡胶制品业77.84692.08塑料制品业144.341345非金属矿制业339.262866.14黑色金属冶炼367.473868.28有色金属冶炼144.291535.16金属制品业201.421948.12普通机械制造354.692351.68专用设备制造238.161714.73交通运输设备511.944011.53电子机械制造409.833286.15电子通信设备508.154499.19仪器仪表设备72.46663.68(二)参数估计1、双击“Eviews”,进入主页。输入数据:点击主菜单中的File/Open/EVWorkfile—Excel—异方差数据2.xls;2、在EV主页界面的窗口,输入“lsycx”,按“Enter”。出现OLS回归结果,如图2:估计样本回归函数DependentVariable:YMethod:LeastSquaresDate:10/19/05Time:15:27Sample:128Includedobservations:28VariableCoefficientStd.Errort-StatisticProb.C12.0356419.517790.6166500.5428X0.1043930.00844112.366700.0000R-squared0.854696Meandependentvar213.4650AdjustedR-squared0.849107S.D.dependentvar146.4895S.E.ofregression56.90368Akaikeinfocriterion10.98935Sumsquaredresid84188.74Schwarzcriterion11.08450Loglikelihood-151.8508F-statistic152.9353Durbin-Watsonstat1.212795Prob(F-statistic)0.000000估计结果为:iYˆ=12.03564+0.104393iX(19.51779)(0.008441)t=(0.616650)(12.36670)2R=0.8546962R=0.849107S.E.=56.89947DW=1.212859F=152.9353这说明在其他因素不变的情况下,销售收入每增长1元,销售利润平均增长0.104393元。2R=0.854696,拟合程度较好。在给定=0.0时,t=12.36670)26(025.0t=2.056,拒绝原假设,说明销售收入对销售利润有显著性影响。F=152.9353)6,21(F05.0=4.23,表明方程整体显著。(三)检验模型的异方差※(一)图形法1、在“Workfile”页面:选中x,y序列,点击鼠标右键,点击Open—asGroup—Yes2、在“Group”页面:点击View-Graph—Scatter—SimpleScatter,得到X,Y的散点图(图3所示):0100200300400500600010002000300040005000XY3、在“Workfile”页面:点击Generate,输入“e2=resid^2”—OK4、选中x,e2序列,点击鼠标右键,Open—asGroup—Yes5、在“Group”页面:点击View-Graph—Scatter—SimpleScatter,得到X,e2的散点图(图4所示):0500010000150002000025000010002000300040005000XE26、判断由图3可以看出,被解释变量Y随着解释变量X的增大而逐渐分散,离散程度越来越大;同样,由图4可以看出,残差平方2ie对解释变量X的散点图主要分布在图形中的下三角部分,大致看出残差平方2ie随iX的变动呈增大趋势。因此,模型很可能存在异方差。但是否确实存在异方差还应该通过更近一步的检验。※(二)White检验1、在“Equation”页面:点击View-ResidualTests—White检验(nocross),(本例为一元函数,没有交叉乘积项)得到检验结果,如图5:White检验结果WhiteHeteroskedasticityTest:F-statistic3.607218Probability0.042036Obs*R-squared6.270612Probability0.043486TestEquation:DependentVariable:RESID^2Method:LeastSquaresDate:10/19/05Time:15:29Sample:128Includedobservations:28VariableCoefficientStd.Errort-StatisticProb.C-3279.7792857.117-1.1479330.2619X5.6706343.1093631.8237280.0802X^2-0.0008710.000653-1.3340000.1942R-squared0.223950Meandependentvar3006.741AdjustedR-squared0.161866S.D.dependentvar5144.470S.E.ofregression4709.744Akaikeinfocriterion19.85361Sumsquaredresid5.55E+08Schwarzcriterion19.99635Loglikelihood-274.9506F-statistic3.607218Durbin-Watsonstat1.479908Prob(F-statistic)0.0420362、因为本例为一元函数,没有交叉乘积项,则辅助函数为2t=0+1tx+22tx+t从上表可以看出,n2R=6.270612,有White检验知,在=0,05下,查2分布表,得临界值5.002(2)=5.99147。比较计算的2统计量与临界值,因为n2R=6.2706125.002(2)=5.99147,所以拒绝原假设,不拒绝备择假设,这表明模型存在异方差。(四)异方差的修正在运用加权最小二乘法估计过程中,分别选用了权数t1=1/tX,t2=1/2tX,t3=1/tX。1、在“Workfile”页面:点击“Generate”,输入“w1=1/x”—OK;同样的输入“w2=1/x^2”“w3=1/sqr(x)”;2、在“Equation”页面:点击“EstimateEquation”,输入“ycx”,点击“weighted”,输入“w1”,出现如图6:用权数t1的结果DependentVariable:YMethod:LeastSquaresDate:10/22/10Time:00:13Sample:128Includedobservations:28Weightingseries:W1VariableCoefficientStd.Errort-StatisticProb.C5.9883516.4033920.9351840.3583X0.1086060.00815513.317340.0000WeightedStatisticsR-squared0.032543Meandependentvar123.4060AdjustedR-squared-0.004667S.D.dependentvar31.99659S.E.ofregression32.07117Akaikeinfocriterion9.842541Sumsquaredresid26742.56Schwarzcriterion9.937699Loglikelihood-135.7956F-statistic177.3515Durbin-Watsonstat1.465148Prob(F-statistic)0.000000UnweightedStatisticsR-squared0.853095Meandependentvar213.4650AdjustedR-squared0.847445S.D.dependentvar146.4895S.E.ofregression57.21632Sumsquaredresid85116.40Durbin-Watsonstat1.2614693、在“Equation”页面:点击“EstimateEquation”,输入“ycx”,点击“weighted”,输入“w2”,出现如图7:用权数t2的结果DependentVariable:YMethod:LeastSquaresDate:10/22/10Time:00:16Sample:128Includedobservations:28Weightingseries:W2VariableCoefficientStd.Errort-StatisticProb.C6.4967033.4865261.8633740.0737X0.1068920.0109919.7252600.0000WeightedStatisticsR-squared0.922715Meandependentvar67.92129AdjustedR-squared0.919743S.D.dependentvar75.51929S.E.ofregression21.39439Akaikeinfocriterion9.032884Sumsquaredresid11900.72Schwarzcriterion9.128041Loglikelihood-124.4604F-statistic94.58068Durbin-Watsonstat1.905670Prob(F-statistic)0.000000UnweightedStatisticsR-squared0.854182Meandependentvar213.4650AdjustedR-squared0.848573S.D.dependentvar146.4895S.E.ofregression57.00434Sumsquaredresid84486.88Durbin-Watsonstat1.2422124、在“Equation”页面:点击“EstimateEquation”,输入“ycx”,点击“weighted”,输入“w3”,出现如图8:用权数t3的结果DependentVariable:YMethod:Least
本文标题:EViews计量经济学实验报告-异方差的诊断及修正
链接地址:https://www.777doc.com/doc-6166436 .html