您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 北师大九年级数学特殊的平行四边形证明题
1.如图,已知E,F,G,H分别是四边形ABCD四边形的中点;(1)当满足条件四边形EFGH是矩形;(2)当满足条件四边形EFGH是菱形;(3)当满足条件四边形EFGH是正方形.2已知,如图,四边形ABCD是菱形,∠B是锐角,AF⊥BC于点F,CH⊥AD于点H,在AB边上取点E,使得AE=AH,在CD边上取点G,使得CG=CF,连接EF、FG、GH、HE.(1)求证:四边形EFGH是矩形;(2)当∠B为多少度时,四边形EFGH是正方形?并证明.3如图,根据图形解答下列问题(1)如图,以△ABC三边向外分别作等边△ACD、△ABE、△BCF,证明四边形ADFE是平行四边形.(2)△ABC满足什么条件时,四边形ADFE是矩形?(3)△ABC满足什么条件时,四边形ADFE是菱形?(4)△ABC满足什么条件时,四边形ADFE是正方形?4)如图(1),Rt△ABC中,∠ACB=90°,中线BE、CD相交于点O,点F、G分别是OB、OC的中点.(1)求证:四边形DFGE是平行四边形;(2)如果把Rt△ABC变为任意△ABC,如图(2),通过你的观察,第(1)问的结论是否仍然成立(不用证明);(3)在图(2)中,试想:如果拖动点A,通过你的观察和探究,在什么条件下四边形DFGE是矩形,并给出证明;(4)在第(3)问中,试想:如果拖动点A,是否存在四边形DFGE是正方形或菱形?如果存在,画出相应的图形(不用证明).5如图1,正方形ABCD的对角线相交于点M,正方形MNPQ与正方形ABCD全等,MN、MQ分别交正方菜ABCD的边于E、F两点.(1)试判断ME与MF之间的数量关系,并给出证明.(2)若将题中的“正方形MNPQ与正方形ABCD”改为“矩形MNPQ与矩形ABCD”,且BC=2AB,其他条件不变,当矩形MNPQ与矩形ABCD的位置如图2所示时,请判断ME与MF之间的数量关系,并给出证明.6如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE(不须证明).(1)如图②,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF,则上面的结论①、②是否仍然成立;(请直接回答“成立”或“不成立”)(2)如图③,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图④,在(2)的基础上,连接AE和EF,若点M、N、P、Q分别为AE、EF、FD、AD的中点,请先判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并写出证明过程.7如图,E是矩形ABCD边BC的中点,P是AD边上一动点,PF⊥AE,PH⊥DE,垂足分别为F,H.(1)当矩形ABCD的长与宽满足什么条件时,四边形PHEF是矩形?请予以证明;(2)在(1)中,动点P运动到什么位置时,矩形PHEF变为正方形?为什么?8)如图,在正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB,AC于点G,E,连接GF.(1)求∠AGD的度数;(2)证明四边形AEFG是菱形;9已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=:时,四边形MENF是正方形(只写结论,不需证明).10如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB,PE交CD于点F,连接DE.(1)请判断△PDE的形状,并给予证明;(2)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=56°,求∠DPE的度数.11.在综合实践活动课中,王老师出了这样一道题:如图1,在矩形ABCD中,M是BC的中点,过点M作ME∥AC交BD于点E,作MF∥BD交AC于点F.求证:四边形OEMF是菱形.做完题后,同学们按照老师的要求进行变式或拓展,提出新的问题让其它同学解答.(1)小明同学说:“我把条件中的‘矩形ABCD’改为‘菱形ABCD’,如图2所示,发现四边形OEMF是矩形.”请给予证明;(2)小芳同学说:“我把条件中的‘点M是BC的中点’改为‘点M是BC延长线上的一个动点’,发现点F落在AC的延长线上,如图3所示,此时OB、ME、MF三条线段之间存在某种数量关系.”请你写出这个结论,并说明理由.12在菱形ABCD和正三角形BGF中,∠ABC=60°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,易证:PG=PC.(不必证明)(2)如图2,当点F在AB的延长线上时,线段PC、PG有怎样的数量关系,写出你的猜想,并给与证明;(3)如图3,当点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,写出你的猜想(不必证明).13(1)如图,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.14已知:如图,△ABC中,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF∥BC交AD于点F,求证:四边形CDEF是菱形。14解:∵AD是∠BAC的平分线,∴∠CAD=∠DAE,在△ABD和△ADE中,AE=AB∠CAD=∠DAEAD=AD,∴△ABD≌△ADE,∴BD=DE,同理△BAF≌△EAF,∴BF=EF,在△BFD和△EDF中,BD=DEDF=DFBF=EF,∴△BFD≌△EDF,∴∠BFD=∠DFE,又∵EF∥BC,∴∠DFE=∠FDC,∴∠BFD=∠BDF,∴BF=BD,∴BF=BD=EF=DE,∴四边形BDEF是菱形.13(1)证明:在正方形ABCD中,∴∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG(2)解:如图2,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠C=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=12解答:(1)提示:如图1:延长GP交DC于点E,利用△PED≌△PGF,得出PE=PG,DE=FG,∴CE=CG,∴CP是EG的中垂线,在RT△CPG中,∠PCG=60°,∴PG=PC.(2)如图2,延长GP交DA于点E,连接EC,GC,∵∠ABC=60°,△BGF正三角形∴GF∥BC∥AD,∴∠EDP=∠GFP,在△DPE和△FPG中∴△DPE≌△FPG(ASA)∴PE=PG,DE=FG=BG,∵∠CDE=CBG=60°,CD=CB,在△CDE和△CBG中,∴△CDE≌△CBG(SAS)∴CE=CG,∠DCE=∠BCG,∴∠ECG=∠DCB=120°,∵PE=PG,∴CP⊥PG,∠PCG=∠ECG=60°∴PG=PC.11)证明:∵ME∥AC,MF∥BD,∴四边形OEMF是平行四边形.又∵四边形ABCD是菱形,∴AC⊥BD,即∠EOF=90°,∴四边形OEMF是矩形.(2)结论:OB=ME-MF.理由如下:∵ME∥AC,MF∥BD,∴四边形OEMF是平行四边形,∴OE=MF,又∵四边形ABCD是矩形,∴OB=12BD,OC=12AD,且AC=BD,∴OB=OC,∴∠OBC=∠OCB,由ME∥AC可知,∠OCB=∠EMB,∴BE=ME,∴OB=BE-OE=ME-MF.10(1)∴△PDE为等腰直角三角形证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,在△BCP和△DCP中,BC=DC∠BCP=∠DCPPC=PC∴△BCP≌△DCP(SAS);∴∠CBP=∠CDP,PD=PB∵PE=PB,∴∠CBP=∠CEP,PD=PE∵∠CFE=∠PFD(对顶角相等)∴180°-∠PFD-∠CDP=180°-∠CFE-∠CEP即∠DPE=∠DCE=90°∴△PDE为等腰直角三角形.(2)解:∵AB∥CD∴∠DCE=∠ABC,∠DPE=∠DCE∴∠DPE=∠ABC∵∠ABC=56°∴∠DPE=56°.9(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,AB=CD∠A=∠DAM=DM,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.证明如下:∵E,F,N分别是BM,CM,CB的中点,∴NE∥MF,NE=MF.∴四边形MENF是平行四边形.由(1),得BM=CM,∴ME=MF.∴四边形MENF是菱形.(3)解:2:1.当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM.∵AD:AB=2:1,∴AM=AB.∵∠A=90,∴∠ABM=∠AMB=45°.同理∠DMC=45°,∴∠EMF=180°-45°-45°=90°.∵四边形MENF是菱形,∴菱形MENF是正方形.8:(1)根据折叠的对称性,可知∠ADG=∠BDG=22.5°.∵四边形ABCD是正方形,∴∠DCG=45°,∴∠AGD=45°+67.5°=112.5°.证明:(2)由对称性,可知AE=EF,AG=FG,∴∠AEG=90°-22.50°=67.5°,∴∠AGE=180°-112.5°=67.5°,∴AE=AG,∴AE=AG=EF=GF,∴四边形AEFG是菱形;证明:(3)∵EF⊥BD,AO⊥BD,∴EF∥AC,∴△DOG∽△DFE,∴OGEF=DODF=22,∴EF=2OG,在直角三角形BEF中,∠EBF=45°,∴BE=2EF=2OG.7:(1)AD=2AB.证明:∵四边形ABCD是矩形,∴AD=BC,AB=CD;∵E是BC的中点,∴AB=BE=EC=CD;则△ABE、△DCE是等腰Rt△;∴∠AEB=∠DEC=45°;∴∠AED=90°;四边形PFEH中,∠PFE=∠FEH=∠EHP=90°,故四边形PFEH是矩形;(2)点P是AD的中点时,矩形PHEF变为正方形;理由如下:由(1)可得∠BAE=∠CDE=45°;∴∠FAP=∠HDP=45°;又∵∠AFP=∠PHD=90°,AP=PD,∴Rt△AFP≌Rt△DHP;∴PF=PH;在矩形PFEH中,PF=PH,故PFEH是正方形.6解:(1)∵DF=CE,AD=DC,且∠ADF=∠DCE,∴△DEC≌△AFD;∴结论①、②成立(1分)(2)结论①、②仍然成立.理由为:∵四边形ABCD为正方形,∴AD=DC=CB且∠ADC=∠DCB=90°,在Rt△ADF和Rt△ECD中AD=DC∠ADC=∠DCBCE=DF,∴Rt△ADF≌Rt△ECD(SAS),(3分)∴AF=DE,∴∠DAF=∠CDE,∵∠ADE+∠CDE=90°,∴∠ADE+∠DAF=90°,∴∠AGD=90°,∴AF⊥DE;(5分)(3)结论:四边形MNPQ是正方形(6分)证明:∵AM=ME,AQ=QD,∴MQ∥DE且MQ=12DE,同理可证:PN∥DE,PN=12DE;MN∥AF,MN=12AF;PQ∥AF,PQ=12AF;∵AF=DE,∴MN=NP
本文标题:北师大九年级数学特殊的平行四边形证明题
链接地址:https://www.777doc.com/doc-6419793 .html