您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 磁场测试题很经典-有难度-
磁场测试题六一、选择题(本大题,共12小题,共60分)1.下列关于磁感应强度的说法正确的是()A.一小段通电导体放在磁场A处,受到的磁场力比B处的大,说明A处的磁感应强度比B处的磁感应强度大B.由B=FIL可知,某处的磁感应强度的大小与放入该处的通电导线所受磁场力F成正比,与导线的I、L成反比C.一小段通电导体在磁场中某处不受磁场力作用,则该处磁感应强度一定为零D.小磁针N极所受磁场力的方向就是该处磁感应强度的方向2.两个完全相同的通电圆环A、B的圆心O重合、圆面相互垂直,通电电流相同,电流方向如图所示,设每个圆环在其圆心O处独立产生的磁感应强度为B0,则O处的磁感应强度大小为()A.0B.2B0C.2B0D.无法确定3.已知无限长通电直导线周围某一点的磁感应强度B的表达式:B=μ0I2πr0,其中r0是该点到通电直导线的距离,I为电流强度,μ0为比例系数(单位为N/A2)。试推断,一个半径为R的圆环,当通过的电流为I时,其轴线上距圆心O点为r0处的磁感应强度应为()A.r02I2(R2+r02)3/2B.μ0RI2(R2+r02)3/2C.μ0R2I2(R2+r02)3/2D.μ0r02I2(R2+r02)3/24.一质量为m,电量为q的负电荷在磁感应强度为B的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是()A.4qBmB.3qBmC.2qBmD.qBm5.类比是物理学中常用的思想方法。狄拉克曾经预言,自然界应该存在只有一个磁极的磁单极子,其周围磁感线呈均匀辐射状分布,距离它r处的磁感应强度大小为B=2rk(k为常数)。磁单极S的磁场分布如图甲所示,它与如图乙所示负点电荷Q的电场分布相似。假设磁单极子S和负点电荷Q均固定,有一带电小球分别在S和Q附近做匀速圆周运动,则关于小球做匀速圆周运动的判断不正确的是A.若小球带正电,其运动轨迹平面可在S正上方,如图甲所示B.若小球带正电,其运动轨迹平面可在Q正下方,如图乙所r0rOIRBEE示C.若小球带负电,其运动轨迹平面可在S正上方,如图甲所示D.若小球带负电,其运动轨迹平面可在Q正下方,如图乙所示6.在M、N两条长直导线所在的平面内,一带电粒子的运动轨迹示意图如图所示。已知两条导线M、N中只有一条导线中通有恒定电流,另一条导线中无电流,关于电流方向和粒子带电情况及运动的方向,可能是()A.M中通有自上而下的恒定电流,带负电的粒子从a点向b点运动B.M中通有自上而下的恒定电流,带正电的粒子从b点向a点运动C.N中通有自下而上的恒定电流,带正电的粒子从b点向a点运动D.N中通有自下而上的恒定电流,带负电的粒子从a点向b点运动7.医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度。电磁血流计由一对电极a和b以及磁极N和S构成,磁极间的磁场是均匀的。使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图所示。由于血液中的正负离子随血液一起在磁场中运动,电极a、b之间会有微小电势差。在达到平衡时,血管内部的电场可看做是匀强电场,血液中的离子所受的电场力和磁场力的合力为零。在某次监测中,两触点间的距离为3.0mm,血管壁的厚度可忽略,两触点间的电势差为160μV,磁感应强度的大小为0.040T。则血流速度的近似值和电极a、b的正负为()A.1.3m/s,a正、b负B.2.7m/s,a正、b负C.1.3m/s,a负、b正D.2.7m/s,a负、b正8.如图所示,MN是磁感应强度为B的匀强磁场的边界。一质量为m、电荷量为q的粒子在纸面内从O点射入磁场。若粒子速度为v0,最远可落在边界上的A点。下列说法中正确的有()A.若粒子落在A点的左侧,其速度一定小于v0B.若粒子落在A点的右侧,其速度一定大于v0C.若粒子落在A点左右两侧d的范围内,其速度不可能小于v0-qBd/2mD.若粒子落在A点左右两侧d的范围内,其速度不可能大于v0+qBd/2m9.如图所示,带电小球以一定的初速度v0竖直向上抛出,能够达到的最大高度为h1;若加上水平方向的匀强磁场,且保持初速度仍为v0,小球上升的最大高度为h2;若加上水平方向的匀强电场,且保持初速度仍为v0,小球上升的最大高度为h3,若加上竖直向上的匀强电场,且保持初速度仍为v0,小球上升的最大高度为h4。不计空气阻力影响,则()A.h2=h1B.h2h1C.h3=h1D.h4h110.如图所示,一带正电的小球穿在一根绝缘的粗糙直杆上,杆与水平方向成θ角,整个空间存在着竖直向上的匀强电场和垂直于杆方向斜向上的匀强磁场。小球沿杆向下运动,在A点时的动能为100J,在C点时动能减为零,B为AC的中点,在运动过程中(???)A.小球在B点时的动能为50JB.小球电势能的增加量等于重力势能的减少量C.小球在AB段克服摩擦力做的功与在BC段克服摩擦力做的功相等D.到达C点后小球可能沿杆向上运动11.如图所示,以直角三角形AOC为边界的有界匀强磁场区域,磁感应强度为日,A=60,AO=L,在O点放置一个粒子源,可以向各个方向发射某种带负电粒子。已知粒子的比荷为qm,发射速度大小都为mqBLv0。设粒子发射方向与OC边的夹角为,不计粒子间相互作用及重力。对于粒子进入磁场后的运动,下列说法正确的是A.当=45时,粒子将从AC边射出B.所有从OA边射出的粒子在磁场中运动时间相等C.随着角的增大,粒子在磁场中运动的时间先变大后变小D.在AC边界上只有一半区域有粒子射出12.如图所示,有一垂直于纸面向外的有界匀强磁场,磁感应强度为B,其边界为一边长为L的正三角形,A、B、C为三角形的三个顶点.若一质量为m、电荷量为+q的粒子(不计重力),以速度mqBLv430从AB边上的某点P垂直于AB边竖直向上射入磁场,然后能从BC边上某点Q射出.关于P点入射的范围和从Q点射出的范围,下列判断正确的是A.LPB432B.LPB431C.LQB43D.LQB21二、计算题(本大题共4小题,共50分)13.如图所示为电流天平,可以用来测量匀强磁场的磁感应强度,它的右臂挂着矩形线圈,匝数n,线圈的水平边长为L,处于匀强磁场内,磁感应强度B的方向与线圈平面垂直,当线圈中通过电流I时,调节砝码使两臂达到平衡,然后使电流反向,大小不变,这时需要在左盘中增加质量为m的砝码,才能使两臂再达到新的平衡,请导出用已知量和可测量n、m、L、I,计算B的表达式14.如图所示的xOy平面处于匀强磁场中,磁场方向与xOy平面(纸面)垂直,磁感应强度B随时间t变化的周期为T,变化图线如图所示.当B为+B0时,磁感应强度方向指向纸外.在坐标原点O有一带正电的粒子P,其电荷量与质量之比恰好等于2πTB0.不计重力.设P在某时刻t0以某一初速度沿y轴正向从O点开始运动,将它经过时间T到达的点记为A.(1)若t0=0,则直线OA与x轴的夹角是多少(2)若t0=T4,则直线OA与x轴的夹角是多少(3)为了使直线OA与x轴的夹角为π/4,在0t0T/4的范围内,t0应取何值是多少15.下图是汤姆孙用来测定电子比荷(电子的电荷量与质量之比)的实验装置示意图,某实验小组的同学利用此装置进行了如下探索:①真空管内的阴极K发出的电子经加速后,穿过A'中心的小孔沿中心线OP的方向进入到两块水平正对放置的平行极板M和N间的区域。当M和N间不加偏转电压时,电子束打在荧光屏的中心P点处,形成了一个亮点;②在M和N间加上偏转电压U后,亮点偏离到P1点;③在M和N之间再加上垂直于纸面向外的匀强磁场,调节磁场的强弱,当磁感应强度的大小为B时,电子在M、N间作匀速直线运动,亮点重新回到P点;④撤去M和N间的偏转电压U,只保留磁场B,电子在M、N间作匀速圆周运动,亮点偏离到P2点。若视荧光屏为平面,测得P、P2的距离为y。已知M和N极板的长度为L1,间距为d,它们的右端到荧光屏中心P点的水平距离为L2,不计电子所受的重力和电子间的相互作用。(1)求电子在M、N间作匀速直线运动时的速度大小;(2)写出电子在M、N间作匀速圆周运动的轨迹半径r与L1、L2及y之间的关系式;(3)若已知电子在M、N间作匀速圆周运动的轨迹半径r,求电子的比荷;16.如图甲所示,一对平行金属板M、N长为L,相距为d,O1O为中轴线.当两板间加电压UMN=U0时,两板间为匀强电场,忽略两极板外的电场.某种带负电的粒子从O1点以速度v0沿O1O方向射入电场,粒子恰好打在上极板M的中点,粒子重力忽略不计.(1)求带电粒子的比荷qm;(2)若MN间加如图乙所示的交变电压,其周期02LTv,从t=0开始,前3T内UMN=2U,后23T内UMN=-U,大量的上述粒子仍然以速度v0沿O1O方向持续射入电场,最终所有粒子刚好能全部离开电场而不打在极板上,求U的值;(3)紧贴板右侧建立xOy坐标系,在xOy坐标第I、IV象限某区域内存在一个圆形的匀强磁场区域,磁场方向垂直于xOy坐标平面,要使在(2)问情景下所有粒子经过磁场偏转后都会聚于坐标为(2d,2d)的P点,求磁感应强度B的大小范围.答题卡第16题乙2U-U3TT2TtOUMN甲xyOv0m-qO1P(2d,2d)MNKOPP2L1L2NMdAA'yP1···123456789101112
本文标题:磁场测试题很经典-有难度-
链接地址:https://www.777doc.com/doc-6437684 .html