您好,欢迎访问三七文档
习题44求下列不定积分:1.dxxx33;解dxxxxxdxxxdxxx327)93)(3(327273233dxxdxxx3127)93(2Cxxxx|3|ln279233123.2.dxxxx103322;解Cxxxxdxxdxxxx|103|ln)103(1031103322222.3.dxxxxx3458;解dxxxxxdxxxdxxxxx3223458)1(8dxxdxxdxxxxx13148213123Cxxxxxx|1|ln3|1|ln4||ln8213123.4.dxx133;解dxxxxxxxdxxxxxdxx)11231122111()1211(132223)21()23()21(123)1(1121|1|ln2222xdxxxdxxxCxxxx312arctan31|1|ln2.5.)3)(2)(1(xxxxdx;解dxxxxxxxxdx)331124(21)3)(2)(1(Cxxx|)1|ln|3|ln3|2|(ln21.6.dxxxx)1()1(122;解dxxxxdxxxx])1(111211121[)1()1(1222Cxxx11|1|ln21|1|ln21Cxx11|1|ln212.7.dxxx)1(12;解Cxxdxxxxdxxx)1ln(21||ln)11()1(1222.8.))(1(22xxxdx;解dxxxxxxxxdx)112111211())(1(222dxxxxx1121|1|ln21||ln2dxxdxxxxx11211241|1|ln21||ln22Cxxxxarctan21)1ln(41|1|ln21||ln2.9.)1)(1(22xxxdx;解dxxxxxxxxxdx)111()1)(1(2222)1ln(21112111221222xdxxxxxxdxxxxxx1121)1ln(21|1|ln21222Cxxxx312arctan33)1ln(21|1|ln2122.10.dxx114;解dxxxxxdxx)12)(12(111224dxxxxdxxxx12214212214222dxxxxdxxxx1222)22(21421222)22(214222)1212(41]12)12(12)12([82222222xxdxxxdxxxxxdxxxxdCxxxxxx)12arctan(42)12arctan(42|1212|ln8222.11.dxxxx222)1(2;解dxxxdxxxxdxxxx11)1(1)1(2222222dxxxdxxxdxxxx11)1(123)1(122122222dxxxdxxxxx11)1(12311212222,因为)312arctan(32)312()312(11321122xxdxdxxx,而dxxdxxx22222])23()21[(1)1(1由递推公式])()32()([)1(21)(122122222nnnaxdxnaxxnaaxdx,得dxxdxxx22222])23()21[(1)1(1312arctan323211231)1121()23(212222xxxxxxdxxxx,所以dxxxx222)1(2Cxxxxxxx312arctan32312arctan3211221112122Cxxxx312arctan34112.12.xdx2sin3;解xdxdxxxdxtan3tan41cos41sin3222Cxxdx3tan2arctan321tan)23(tan14122.13.dxxcos31;解)2sec1(2cos)2(2cos121cos31222xxxdxdxdxxCxxxd22tanarctan212tan22tan2.或duuuuxudxx221212312tancos31令CxCuduu22tanarctan212arctan21)2(122.14.dxxsin21;解)2cot2(csc2sin)2(2cos2sin22sin2122xxxxdxxdxdxx222)23()212(cot)212(cot12cot2cot)2(cotxxdxxxdCx312cot2arctan32.或duuuuxudxx221212212tansin21令duuduuu222)23()21(111CxCu312tan2arctan32312arctan32.15.xxdxcossin1;解Cxxxdxxdxxxdx|2tan|ln2tan1)2(tan)2tan1(2cos21cossin12.或duuuuuuxuxxdx2222121112112tancossin1令CxCuduu|12tan|ln|1|ln11.16.5cossin2xxdx;解duuuduuuuuuxuxxdx2231125111412tan5cossin222222令CxCuduu512tan3arctan51513arctan51)35()31(13122.或duuuuuuxuxxdx2222125111412tan5cossin2令duuduuu222)35()31(1312231CxCu512tan3arctan51513arctan51.17.dxx3111;解duuuduuuuxdxx)111(33111111233令CxxxCuuu)11ln(313)1(23|1|ln332333322.18.dxxx11)(3;解Cxxxdxxxdxxx232233221]1)[(11)(.19.dxxx1111;解duuuuduuuuxdxxx)122(221111111令Cuuu|)1|ln2221(22Cxxx)11ln(414)1(.20.4xxdx;解duuuuuxxxdx324441令Cuuuduuu|1|ln442)111(42Cxxx)1ln(4244.21.xdxxx11;解令uxx11,则2211uux,duuudx22)1(4,duuuduuuuuuxdxxx)1111(2)1(41111222222Cuuuarctan2|11|lnCxxxxxx11arctan2|1111|ln.22.342)1()1(xxdx.解令uxx311,则1133uux,232)1(6uudx,代入得CxxCuduxxdx334211232323)1()1(.
本文标题:44
链接地址:https://www.777doc.com/doc-6513964 .html