您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 高中物理动量典型问题剖析
动量典型问题剖析问题1:掌握求恒力和变力冲量的方法。恒力F的冲量直接根据I=Ft求,而变力的冲量一般要由动量定理或F-t图线与横轴所夹的面积来求。例1、质量为m的小球由高为H的、倾角为θ光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大?分析与解:力的作用时间都是gHgHt2sin1sin22,力的大小依次是mg、mgcosθ和mg.sinθ,所以它们的冲量依次是:gHmIgHmIgHmING2,tan2,sin2合特别要注意,该过程中弹力虽然不做功,但对物体有冲量。例2、一个物体同时受到两个力F1、F2的作用,F1、F2与时间t的关系如图1所示,如果该物体从静止开始运动,经过t=10s后F1、F2以及合力F的冲量各是多少?分析与解:经过t=10s后,F1的冲量I1=10×10/2=50N.SF2的冲量I2=-50N.S,合力F的冲量为0.例3、一质量为100g的小球从0.80m高处自由下落到一厚软垫上.若从小球接触软垫到小球陷至最低点经历了0.2s,则这段时间内软垫对小球的冲量为________.(取g=10m/s2,不计空气阻力).分析与解:小球从高处自由下落到软垫陷至最低点经历了两个过程,从高处自由下落到接触软垫前一瞬间,是自由下落过程,接触软垫前一瞬间速度由:ghvt22,求出smghvt/42.接触软垫时受到软垫向上作用力N和重力G(=mg)作用,规定向下为正,由动量定理:(mg-N)t=0-mtv故有:在重物与地面撞击问题中,是否考虑重力,取决于相互作用力与重力大小的比较,此题中N=0.3N,mg=0.1N,显然在同一数量级上,不可忽略.若二者不在同一数量级,相差极大,图1则可考虑忽略不计(实际上从同一高度下落,往往要看撞击时间是否极短,越短冲击力越大).问题2:掌握求动量及动量变化的方法。求动量的变化要用平行四边形定则或动量定理。例4、以初速度v0平抛出一个质量为m的物体,抛出后t秒内物体的动量变化是多少?分析与解:因为合外力就是重力,所以Δp=Ft=mgt例5、一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ,则()A、过程I中钢珠的动量的改变量等于重力的冲量B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小C、I、Ⅱ两个过程中合外力的总冲量等于零D、过程Ⅱ中钢珠的动量的改变量等于零分析与解:根据动量定理可知,在过程I中,钢珠从静止状态自由下落.不计空气阻力,小球所受的合外力即为重力,因此钢珠的动量的改变量等于重力的冲量,选项A正确;过程I中阻力的冲量的大小等于过程I中重力的冲量的大小与过程Ⅱ中重力的冲量的大小之和,显然B选项不对;在I、Ⅱ两个过程中,钢珠动量的改变量各不为零.且它们大小相等、方向相反,但从整体看,钢珠动量的改变量为零,故合外力的总冲量等于零,故C选项正确,D选项错误。因此,本题的正确选项为A、C。问题3:能应用动量定理求解相关问题遇到涉及力、时间和速度变化的问题时.运用动量定理解答往往比运用牛顿运动定律及运动学规律求解简便。应用动量定理解题的思路和一般步骤为:(1)明确研究对象和物理过程;(2)分析研究对象在运动过程中的受力情况;(3)选取正方向,确定物体在运动过程中始末两状态的动量;(4)依据动量定理列方程、求解。1.简解多过程问题。例6、一个质量为m=2kg的物体,在F1=8N的水平推力作用下,从静止开始沿水平面运动了t1=5s,然后推力减小为F2=5N,方向不变,物体又运动了t2=4s后撤去外力,物体再经过t3=6s停下来。试求物体在水平面上所受的摩擦力。分析与解:规定推力的方向为正方向,在物体运动的整个过程中,物体的初动量P1=0,量P2=O。据动量定理有:0)((3212211tttftFtF即:0)645(4558fNf4由例6可知,合理选取研究过程,能简化解题步骤,提高解题速度。本题也可以用牛顿运动定律求解。同学们可比较这两种求解方法的简繁情况。.2.求解平均力问题例7、质量是60kg的建筑工人,不慎从高空跌下,由于弹性安全带的保护作用,最后使人悬挂在空中.已知弹性安全带缓冲时间为1.2s,安全带伸直后长5m,求安全带所受的平均冲量.(g=10m/s2)分析与解:人下落为自由落体运动,下落到底端时的速度为:ghV220smghV/1020取人为研究对象,在人和安全带相互作用的过程中,人受到重力mg和安全带给的冲力F,取F方向为正方向,由动量定理得:Ft=mV—mV0所以NtmVmgF11000,(方向竖直向下)注意:动量定理既适用于恒力作用下的问题,也适用于变力作用下的问题.如果是在变力作用下的问题,由动量定理求出的力是在t时间内的平均值.3、求解曲线运动问题例8、如图2所示,以Vo=10m/s2的初速度、与水平方向成300角抛出一个质量m=2kg的小球.忽略空气阻力的作用,g取10m/s2.求抛出后第2s末小球速度的大小.分析与解:小球在运动过程中只受到重力的作用,在水平方向做匀速运动,在竖直方向做匀变速运动,竖直方向应用动量定理得:Fyt=mVy-mVy0所以mgt=mVy-(-mV0.sin300),解得Vy=gt-V0.sin300=15m/s.而Vx=V0.cos300=sm/35在第2s未小球的速度大小为:smVVVy/310220注意:动量定理不仅适用于物体做直线运动的问题,而且也适用物体做曲线运动的问题,在求解曲线运动问题中,一般以动量定理的分量形式建立方程,即:V0300图2Fxt=mVx-mVx0Fyt=mVy-mVy04、求解流体问题例9、某种气体分子束由质量m=5.4X10-26kg速度V=460m/s的分子组成,各分子都向同一方向运动,垂直地打在某平面上后又以原速率反向弹回,如分子束中每立方米的体积内有n0=1.5X1020个分子,求被分子束撞击的平面所受到的压强.分析与解:设在△t时间内射到S的某平面上的气体的质量为ΔM,则:mntSVM0.取ΔM为研究对象,受到的合外力等于平面作用到气体上的压力F以V方向规定为正方向,由动量定理得:-F.Δt=ΔMV-(-ΔM.V),解得SmnVF022平面受到的压强P为:aPmnVSFP428.32/02注意:处理有关流体(如水、空气、高压燃气等)撞击物体表面产生冲力(或压强)的问题,可以说非动量定理莫属.解决这类问题的关键是选好研究对象,一般情况下选在极短时间△t内射到物体表面上的流体为研究对象5、对系统应用动量定理。系统的动量定理就是系统所受合外力的冲量等于系统总动量的变化。若将系统受到的每一个外力、系统内每一个物体的速度均沿正交坐标系x轴和y轴分解,则系统的动量定理的数学表达式如下:xxxxVmVmII221121,yyyyVmVmII221121对于不需求解系统内部各物体间相互作用力的问题,采用系统的动量定理求解将会使求解简单、过程明确。例10、如图3所示,质量为M的汽车带着质量为m的拖车在平直公路上以加速度a匀加速前进,当速度为V0时拖车突然与汽车脱钩,到拖车停下瞬间司机才发现。若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大?分析与解:以汽车和拖车系统为研究对象,全过程系统受的合外力始终为amM,该过程经历时间为V0/μg,末状态拖车的动量为零。mV0V/图3M全过程对系统用动量定理可得:0/0/0,VMggamMVVmMMVgVamM注意:这种方法只能用在拖车停下之前。因为拖车停下后,系统受的合外力中少了拖车受到的摩擦力,因此合外力大小不再是amM。例11、如图4所示,矩形盒B的质量为M,放在水平面上,盒内有一质量为m的物体A,A与B、B与地面间的动摩擦因数分别μ1、μ2,开始时二者均静止。现瞬间使物体A获取一向右且与矩形盒B左、右侧壁垂直的水平速度V0,以后物体A在盒B的左右壁碰撞时,B始终向右运动。当A与B最后一次碰撞后,B停止运动,A则继续向右滑行距离S后也停止运动,求盒B运动的时间t。分析与解:以物体A、盒B组成的系统为研究对象,它们在水平方向所受的外力就是地面盒B的滑动摩擦力,而A与B间的摩擦力、A与B碰撞时的相互作用力均是内力。设B停止运动时A的速度为V,且假设向右为正方向,由系统的动量定理得:02)(mVmVgtMm当B停止运动后,对A应用动能定理得:2121mVmgS由以上二式联立解得:gmMgSmmVt)(2210。问题4:能根据动量守恒条件判定系统的动量是否守恒?例12、如图5所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中:A、动量守恒、机械能守恒B、动量不守恒、机械能不守恒C、动量守恒、机械能不守恒D、动量不守恒、机械能守恒分析与解:若以子弹、木块和弹簧合在一起作为研究对象(系统),从子弹开始射入木块到弹簧压缩至最短时,弹簧固定端墙壁对弹簧有外力作用,因此动量不守恒.而在子弹射入木块时,存在剧烈摩擦作用,有一部分能量将转化为内能,机械能也不守恒.实际上,在子弹射入木块这一瞬间过程,取子弹与木块为系统则可认为动量守恒(此瞬间弹簧尚未形变).子图5BAV0图4弹射入木块后木块压缩弹簧过程中,机械能守恒,但动量不守恒.物理规律总是在一定条件得出的,因此在分析问题时,不但要弄清取谁作研究对象,还要弄清过程的阶段的选取,判断各阶段满足物理规律的条件.例13、质量为M的小车中挂有一个单摆,摆球的质量为M0,小车和单摆以恒定的速度V0沿水平地面运动,与位于正对面的质量为M1的静止木块发生碰撞,碰撞时间极短,在此过程中,下列哪些说法是可能发生的()A.小车、木块、摆球的速度都发生变化,分别为V1、V2和V3,且满足:(M+M0)V0=MV1+M1V2+M0V3;B.摆球的速度不变,小车和木块的速度为V1、V2,且满足:MV0=MV1+M1V2;C.摆球的速度不变,小车和木块的速度都为V,且满足:MV0=(M+M1)V;D.小车和摆球的速度都变为V1,木块的速度变为V2,且满足:(M+M0)V0=(M+M0)V1+M1V2分析与解:小车与木块相碰,随之发生的将有两个过程:其一是,小车与木块相碰,作用时间极短,过程结束时小车与木块速度发生了变化,而小球的速度未变;其二是,摆球将要相对于车向右摆动,又导致小车与木块速度的改变。但是题目中已明确指出只需讨论碰撞的极短过程,不需考虑第二过程。因此,我们只需分析B、C两项。其实,小车与木块相碰后,将可能会出现两种情况,即碰撞后小车与木块合二为一或它们碰后又分开,前者正是C项所描述的,后者正是B项所描述的,所以B、C两项正确。问题5:能根据动量守恒定律求解“合二为一”和“一分为二”问题。“合二为一”问题:两个速度不同的物体,经过相互作用,最后达到共同速度。“一分为二”问题:两个物体以共同的初速度运动,由于相互作用而分开各自以不同的速度运动。例14、甲、乙两小孩各乘一辆小车在光滑水平面上匀速相向行驶,速度均为6m/s.甲车上有质量为m=1kg的小球若干个,甲和他的车及所带小球的总质量为M1=50kg,乙和他的车总质量为M2=30kg。现为避免相撞,甲不断地将小球以相对地面16.5m/s的水平速度抛向乙,且被乙接住。假设某一次甲将小球抛出且被乙接住后刚好可保证两车不致相撞,试求此时:(1)两车的速度各为多少?(2)甲总共抛出了多少个小球?分析与解:甲、乙两小孩依在抛球的时候是“一分为二”的过程,接球的过程是“合二为一”的过程。(1)甲、乙两小孩及两车组成的系统总动量沿甲车的运动方向,甲不断抛球、乙接球后,当甲和小车与乙和小车具有共同速度时,可保证刚好不撞。设共同速度为
本文标题:高中物理动量典型问题剖析
链接地址:https://www.777doc.com/doc-6600369 .html