您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 青岛版图形的测试测试题
第一章图形的相似测试题一.选择题1.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元2.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=3.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为()A.1B.C.1D.4.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6B.8C.10D.12第5题图第6题图5.如图,在等边△ABC中,D、E、F分别是BC、AC、AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF与△ABC的面积之比为()A.1∶3B.2∶3C.3∶2D.3∶36.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学著作《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A.1.25尺B.57.5尺C.6.25尺D.56.5尺7.一张等腰三角形纸片,底边长l5cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A.第4张B.第5张C.第6张D.第7张8.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=8,CD=12,则GH的长为()A.4B.4.8C.6D.109.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是()A.3.25mB.4.25mC.4.45mD.4.75m10.如图7,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是()A.(3,2)B.(-2,-3)C.(2,3)或(-2,-3)D.(3,2)或(-3,-2)二、填空题13.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=________时,以A、D、E为顶点的三角形与△ABC相似.14.如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF=1,则S△ADF的值为.15.(2017甘肃省卷)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于________cm.第12题图第13题图16.(2017宁夏)在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=13DM.当AM⊥BM时,则BC的长为________.三.解答题如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E、F分别是AC、BC边上的点,且CE=13AC,BF=13BC.(1)求证:∠EDF=90°;(2)若BC=6,AB=43,求DE的长.(2018•陕西)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.17.如图,矩形OABC中,OA在x轴上,OC在y轴上,且OA=8,AB=16,把△ABC沿着AC对折得到△AB′C,AB′交y轴于D点.(1)求线段OD的长度(2)求B′点的坐标.1.在△ABC中,AB=AC=5,BC=6,点D在边AB上,DE⊥AB,点E在边BC,点F在边AC上,且∠DEF=∠B.(1)求证:△FCE∽△EBD;(2)当点D在线段AB上运动时,是否有可能使S△FCE=4S△EBD?如果有可能,那么求出BD的长;如果不可能,请说明理由.7.、如图,在直角坐标系中,Rt△OAB的直角顶点A在x轴上,OA=4,AB=3,动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动.当两个动点运动了x秒(0<x<4)时,解答下列问题:(1)求点N的坐标(用含x的代数式表示);(2)在两个动点运动的过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,请说明理由.21.(12分)如图,正方形ABCD的边长为4,E是BC边的中点,点P在直线AD上,过P作PF⊥AE于F.(1)求证:△PFA∽△ABE;(2)当P在射线AD上运动时,设PA=x,是否存在实数x,使以P、F、E为顶角的三角形也与△ABE相似,若存在请求出x的值,不存在请说明理由.
本文标题:青岛版图形的测试测试题
链接地址:https://www.777doc.com/doc-6615884 .html