您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2014年几何难题专题训练四边形
2014年几何难题专题训练四边形一.选择题(共7小题)1.如图,ABCD、CEFG是正方形,E在CD上且BE平分∠DBC,O是BD中点,直线BE、DG交于H.BD,AH交于M,连接OH,下列四个结论:①BE⊥GD;②OH=1/2BG;③∠AHD=45°;④GD=√2AM,其中正确的结论个数有()A.1个B.2个C.3个D.4个2.如图,E是▱ABCD内一点,已知DE⊥AD,∠CBE=∠CDE,∠BCE=45°,CE的延长线交AD于F,连接BF,下列结论:①BE⊥AB;②BE=CD;③四边形BCDF为等腰梯形;④AF=√2CE,其中正确的是()A.只有③④B.只有①②③C.只有①②④D.①②③④3.如图,正方形ABCD中,E、F分别为边AD、DC上的点,且AE=FC,过F作FH⊥BE,交AB于G,过H作HM⊥AB于M,若AB=6,AE=2,则下列结论中:①∠BGF=∠CFB;②√2DH=EH+FH;③HM/BC=1/4,其中结论正确的是()A.只有①②B.只有①③C.只有②③D.①②③4.如图,在正五边形ABCDE中,对角线AD,AC与EB分别相交于点M,N.有下列结论①四边形EDCN是菱形②四边形MNCD是等腰梯形③△AEM与△CBN相似④△AEN与△EDM全等其中正确的有()个.A.1个B.2个C.3个D.4个5.如图,点F为正方形ABCD的边CD的中点,E为BC上一点,M为EF上一点,且D、M关于AF对称,B、M关于AE对称,∠CFE的平分线交AE的延长线于G,交BC于N,连CG,下列结论:①△AFG为等腰直角三角形;②CG=2√2CN;③S△CEF=S△ABE,其中正确的有()A.只有①B.只有②C.①②D.①②③6.如图,如图正方形ABCD内一点E,满足△CDE为正三角形,直线AE交BC于F点,过E点的直线GH⊥AF,交AB于点G,交CD于点H.以下结论:①∠AFC=105°;②GH=2EF;③√2CE=EF+EH;④AE/EH=2/3其中正确的有()A.①②③B.①③④C.①④D.①②③④7.如图,四边形ABDM中,AB=BD,AB⊥BD,∠AMD=60°,以AB为边作等边△ABC,BE平分∠ABD交CD于E,连ME;下列结论:①∠BEC=60°;②MA+MD=√2ME;③若BD=√6,则EC=√3−1.其中正确的结论()A.只有①②B.只有②③C.只有①③D.①②③二.填空题(共4小题)8.如图,Rt△ABC中,∠C=90°,BC=3cm,AB=5cm.点P从点A出发沿AC以1.5cm/s的速度向点C匀速运动,到达点C后立刻以原来的速度沿CA返回;点Q从点B出发沿BA以1cm/s的速度向点A匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线PC-CB-BQ于点E.点P、Q同时出发,当点Q到达点A时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0),则当t=_________秒时,四边形BQDE为直角梯形.9.如图,直角梯形OABC的直角顶点是坐标原点,边OA,OC分别在X轴,y轴的正半轴上.OA∥BC,D是BC上一点,BD=1/4,OA=√2,AB=3,∠OAB=45°,E,F分别是线段OA,AB上的两个动点,且始终保持∠DEF=45°,如果△AEF是等腰三角形时.将△AEF沿EF对折得△A′EF与五边形OEFBC重叠部分的面积为_________.10.如图,在梯形ABCD中,BC∥AD,∠A+∠D=90°,tanA=2,过点B作BH⊥AD于H,BC=BH=2,动点F从点D出发,以每秒1个单位的速度沿DH运动到点H停止,在运动过程中,过点F作EF⊥AD交折线D→C→B于点E,将纸片沿直线EF折叠,点C、D的对应点分别是点C1、D1,设运动时间是x秒(x>0).(1)当点E和点C重合时,运动时间x的值为_________秒;(2)当△BCD1是等腰三角形时,此刻x为_________秒.11.如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC,翻折纸片ABCD,使点A与点C重合,折痕为EF.连接CE、CF、BD,AC、BD的交点为点O,AC、EF的交点为点G.如果CE⊥AB,AB=7,CD=3.下列结论中,正确的序号是_________.①EF⊥AC;②BD∥EF;③连接FO,则FO∥AB;④S四边形AECF=AC•EF;⑤EF=(25√2/7).三.解答题(共19小题)12.在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.(1)如图1,当点M与点C重合,求证:DF=MN;(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以√2cm/s速度沿AC向点C运动,运动时间为t(t>0);①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.13.某数学兴趣小组开展了一次课外活动,过程如下:如图1,正方形ABCD中,AB=6,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.(1)求证:DP=DQ;(2)如图2,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)如图3,固定三角板直角顶点在D点不动,转动三角板,使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ的平分线DE交BC延长线于点E,连接PE,若AB:AP=3:4,请帮小明算出△DEP的面积.14.如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=4/3,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.15.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2√2,对角线AE,DF相交于点O,连接OC.求OC的长度.16.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的1/4,请直接写出△ABC的面积.17.在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,联结QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.(1)求y关于x的函数解析式,并写出x的取值范围;(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值.18.问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.19.在矩形ABCD中,点E在BC边上,过E作EF⊥AC于F,G为线段AE的中点,连接BF、FG、GB.设AE/BC=k.(1)证明:△BGF是等腰三角形;(2)当k为何值时,△BGF是等边三角形?(3)我们知道:在一个三角形中,等边所对的角相等;反过来,等角所对的边也相等.事实上,在一个三角形中,较大的边所对的角也较大;反之也成立.利用上述结论,探究:当△BGF分别为锐角、直角、钝角三角形时,k的取值范围.20.小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:问题情境:如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=S△ABF(S表示面积)问题迁移:如图2:在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66°,∠POB=30°,OP=4km,试求△MON的面积.(结果精确到0.1km2)(参考数据:sin66°≈0.91,tan66°≈2.25,√3≈1.73)拓展延伸:如图4,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)(6,3)(4.5,4.5)、(4、2),过点p的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.21.如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=1/2∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.22.如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,y=S1/S2①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.23.阅读下面材料:小明遇到这样一
本文标题:2014年几何难题专题训练四边形
链接地址:https://www.777doc.com/doc-6732517 .html