您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 七年级下数学相交线与平行线专题总结(含答案)
相交线与平行线专题总结一、知识点填空1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.对顶角的性质可概括为:3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.4.垂线的性质:⑴过一点______________一条直线与已知直线垂直⑵连接直线外一点与直线上各点的所在线段中,5.直线外一点到这条直线的垂线段的长度,叫做6.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中:⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.7.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.8.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.9.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.10.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______.11.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:________________________________.12.判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.13.把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.14.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______.⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.二:典型题型训练15.如图,,8,6,10,BCACCBcmACcmABcm那么点A到BC的距离是_____,点B到AC的距离是_______,点A、B两点的距离是_____,点C到AB的距离是________.16.设a、b、c为平面上三条不同直线,若//,//abbc,则a与c的位置关系是_________;若,abbc,则a与c的位置关系是_________;若//ab,bc,则a与c的位置关系是________.17.如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠COE、∠AOE、∠AOG的度数.18.如图,AOC与BOC是邻补角,OD、OE分别是AOC与BOC的平分线,试判断OD与OE的位置关系,并说明理由.19.如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.解:∠B+∠E=∠BCE过点C作CF∥AB,则B____()又∵AB∥DE,AB∥CF,∴____________()∴∠E=∠____()∴∠B+∠E=∠1+∠2即∠B+∠E=∠BCE.20.⑴如图,已知∠1=∠2求证:a∥b.⑵直线//ab,求证:12.21.阅读理解并在括号内填注理由:如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.证明:∵AB∥CD,∴∠MEB=∠MFD()又∵∠1=∠2,∴∠MEB-∠1=∠MFD-∠2,即∠MEP=∠______∴EP∥_____.()22.已知DB∥FG∥EC,A是FG上一点,∠ABD=60°,∠ACE=36°,AP平分∠BAC,求:⑴∠BAC的大小;⑵∠PAG的大小.23.如图,已知ABC,ADBC于D,E为AB上一点,EFBC于F,//DGBA交CA于G.求证1224.已知:如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗?试说明理由.三:兴趣拓展平行线问题:平行线是我们日常生活中非常常见的图形.练习本每一页中的横线、直尺的上下两边、人行横道上的“斑马线”以及黑板框的对边、桌面的对边、教室墙壁的对边等等均是互相平行的线段.正因为平行线在生活中的广泛应用,因此有关它的基本知识及性质成为中学几何的基本知识.正因为平行线在几何理论中的基础性,平行线成为古往今来很多数学家非常重视的研究对象.历史上关于平行公理的三种假设,产生了三种不同的几何(罗巴切夫斯基几何、黎曼几何及欧几里得几何),它们在使人们认识宇宙空间中起着非常重要的作用.现行中学中所学的几何是属于欧几里得几何,它是建立在这样一个公理基础之上的:“在平面中,经过直线外一点,有且只有一条直线与这条直线平行”.在此基础上,我们学习了两条平行线的判定定理及性质定理.下面我们举例说明这些知识的应用.例1如图1-18,直线a∥b,直线AB交a与b于A,B,CA平分∠1,CB平分∠2,求证:∠C=90°例2如图1-21所示,AA1∥BA2求∠A1=∠B1+∠A2.例3如图1-26所示.AE∥BD,∠1=3∠2,∠2=25°,求∠C.例4求证:三角形内角之和等于180°.例5求证:四边形内角和等于360°.例6如图1-29所示.直线l的同侧有三点A,B,C,且AB∥l,BC∥l.求证:A,B,C三点在同一条直线上.例7如图1-30所示.∠1=∠2,∠D=90°,EF⊥CD.求证:∠3=∠B.四,课后思考题1.如图1-31所示.已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF.求∠BEG和∠DEG.2.如图1-32所示.CD是∠ACB的平分线,∠ACB=40°,∠B=70°,DE∥BC.求∠EDC和∠BDC的度数.3.如图1-33所示.AB∥CD,∠BAE=30°,∠DCE=60°,EF,EG三等分∠AEC.问:EF与EG中有没有与AB平行的直线,为什么?4.证明:五边形内角和等于540°.5.如图1-34所示.已知CD平分∠ACB,且DE∥ACCD∥EF.求证:EF平分∠DEB.参考答案一:1.邻补角2.对顶角,对顶角相等3.垂直有且只有垂线段最短4.点到直线的距离5.同位角内错角同旁内角6.平行相交平行7.平行这两直线互相平行8.同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.9.平行10.两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.11.命题题设结论由已知事项推出的事项题设结论真命题假命题12.平移相同平行且相等13.6cm8cm10cm4.8cm.14.平行平行垂直15.28°118°59°16.OD⊥OE理由略17.1(两直线平行,内错角相等)DE∥CF(平行于同一直线的两条直线平行)2(两直线平行,内错角相等).18.⑴∵∠1=∠2,又∵∠2=∠3(对顶角相等),∴∠1=∠3∴a∥b(同位角相等两直线平行)⑵∵a∥b∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等)∴∠1=∠2.19.两直线平行,同位角相等MFQFQ同位角相等两直线平行20.96°,12°.21.,ADBCFEBC90EFBADB//EFAD23//,31DGBA12.22.∠A=∠F.∵∠1=∠DGF(对顶角相等)又∠1=∠2∴∠DGF=∠2∴DB∥EC(同位角相等,两直线平行)∴∠DBA=∠C(两直线平行,同位角相等)又∵∠C=∠D∴∠DBA=∠D∴DF∥AC(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等).三例1如图1-18,直线a∥b,直线AB交a与b于A,B,CA平分∠1,CB平分∠2,求证:∠C=90°分析由于a∥b,∠1,∠2是两个同侧内角,因此∠1+∠2=过C点作直线l,使l∥a(或b)即可通过平行线的性质实现等角转移.证过C点作直线l,使l∥a(图1-19).因为a∥b,所以b∥l,所以∠1+∠2=180°(同侧内角互补).因为AC平分∠1,BC平分∠2,所以又∠3=∠CAE,∠4=∠CBF(内错角相等),所以∠3+∠4=∠CAE+∠CBF说明做完此题不妨想一想这个问题的“反问题”是否成立,即“两条直线a,b被直线AB所截(如图1-20所示),CA,CB分别是∠BAE与∠ABF的平分线,若∠C=90°,问直线a与直线b是否一定平行?”由于这个问题与上述问题非常相似(将条件与结论交换位置),因此,不妨模仿原问题的解决方法来试解.例2如图1-21所示,AA1∥BA2求∠A1-∠B1+∠A2.分析本题对∠A1,∠A2,∠B1的大小并没有给出特定的数值,因此,答案显然与所给的三个角的大小无关.也就是说,不管∠A1,∠A2,∠B1的大小如何,答案应是确定的.我们从图形直观,有理由猜想答案大概是零,即∠A1+∠A2=∠B1.①猜想,常常受到直观的启发,但猜想必须经过严格的证明.①式给我们一种启发,能不能将∠B1一分为二使其每一部分分别等于∠A1与∠A2.这就引发我们过B1点引AA1(从而也是BA2)的平行线,它将∠B1一分为二.证过B1引B1E∥AA1,它将∠A1B1A2分成两个角:∠1,∠2(如图1-22所示)因为AA1∥BA2,所以B1E∥BA2.从而∠1=∠A1,∠2=∠A2(内错角相等),所以∠B1=∠1+∠2=∠A1+∠A2,即∠A1-∠B1+∠A2=0.说明(1)从证题的过程可以发现,问题的实质在于AA1∥BA2,它与连接A1,A2两点之间的折线段的数目无关,如图1-23所示.连接A1,A2之间的折线段增加到4条:A1B1,B1A2,A2B2,B2A3,仍然有∠A1+∠A2+∠A3=∠B1+∠B2.(即那些向右凸出的角的和=向左凸的角的和)即∠A1-∠B1+∠A2-∠B2+∠A3=0.进一步可以推广为∠A1-∠B1+∠A2-∠B2+…-∠Bn-1+∠An=0.这时,连结A1,An之间的折线段共有n段A1B1,B1A2,…,Bn-1An(当然,仍要保持AA1∥BAn).推广是一种发展自己思考能力的方法,有些简单的问题,如果抓住了问题的本质,那么,在本质不变的情况下,可以将问题推广到复杂的情况.(2)这个问题也可以将条件与结论对换一下,变成一个新问题.问题1如图1-24所示.∠A1+∠A2=∠B1,问AA1与BA2是否平行?问题2如图1-25所示.若∠A1+∠A2+…+∠An=∠B1+∠B2+…+∠Bn-1,问AA1与BAn是否平行?这两个问题请同学加以思考.例3如图1-26所示.AE∥BD,∠1=3∠2,∠2=25°,求∠C.分析利用平行线的性质,可以将角“转移”到新的位置,如∠1=∠DFC或∠AFB.若能将∠1,∠2,∠C“集中”到一个顶点处,这是最理想不过的了,过F点作BC的平行线恰能实现这个目标.解过F到FG∥CB
本文标题:七年级下数学相交线与平行线专题总结(含答案)
链接地址:https://www.777doc.com/doc-6737270 .html