您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 汽车理论 > 用牛顿运动定律解决问题
用牛顿运动定律解决问题教材分析本节是牛顿运动定律应用的重点内容,分别从平衡和非平衡两个侧面进行,共点力的平衡问题是高中物理的最基本也是最常见的问题,它的解题方法多、技巧性强,超重失重既是一种现象,更是一种观念,两个应用都是后续课程的基础。学情分析通过前面对“牛顿第二定律”的学习,学生已经知道了解应用类问题的大致思路和方法,本节要继续进行这方面的学习。二力平衡问题初中已经学过,这节内容是它的延续和扩展,在解题类型和方法上可能存在困难。学生很难从理论上自主地得到超重、失重现象的运动学特征。学生在学习超重和失重现象时会受到一些前概念的影响,容易把生活中说的有些“超重”与物理学上的超重混为一谈,把物理学上的失重误认为是物体“失去重力”;容易把超重、失重现象的运动学特征与物体的运动方向相联系,通过实例多加体会。设计思路从学生熟悉的事例出发,通过理论分析和实验验证得出平衡条件,再由例题加以体验,避免由教师直接陈述,提高学习效果。对超重失重也采用类似方法,更突出学生实际体验,使物理学习由抽象的概念向实在的观念转变,突出新课程理念。“高中物理课程应促进学生自主学习,让学生积极参与,乐于探索、勇于实验、勤于思考。”设计更多的探究性实验不仅符合课标中提出的“通过实验认识超重和失重现象”,也符合学生的认知规律;从生活实际出发,设计贴近学生生活的实验,以此为基础,以探究为主线,让学生通过实验操作、观察来认识物理现象,认知物理过程,让学生用生活化的语言表述观察到的超、失重现象,探究物理规律,再引导学生将生活语言转化成科学规范的物理语言阐述物理规律。通过实验让学生暴露错误的前概念,理解并掌握物理概念与规律。经过构建从而获得物理知识,形成技能,同时培养学生创新精神与实践能力。为避免学生对概念的混淆,教学中不提出“实重”“视重”。三维目标知识与技能1.理解共点力作用下物体平衡状态的概念,能推导出共点力作用下物体的平衡条件;2.会用共点力平衡条件解决有关力的平衡问题;3.通过实验认识超重和失重现象,理解产生超重、失重现象的条件和实质;4.进一步熟练掌握应用牛顿运动定律解决问题的方法和步骤。过程与方法1.培养学生的分析推理能力和实验观察能力;2.培养学生处理三力平衡问题时一题多解的能力;3.引导帮助学生归纳总结发生超重、失重现象的条件及实质。情感态度与价值观1.渗透“学以致用”的思想,有将物理知识应用于生产和生活实践的意识,勇于探究与日常生活有关的物理问题;2.培养学生联系实际、实事求是的科学态度和科学精神。教学重点1.共点力作用下物体的平衡条件及应用;2.发生超重、失重现象的条件及本质。教学难点1.共点力平衡条件的应用;2.超重、失重现象的实质.正确分析受力并恰当地运用正交分解法。教具准备多媒体教学设备,体重计、装满水的塑料瓶等。课时安排1课时教学过程[新课导入]上一节课中我们学习了用牛顿运动定律解决问题的两种方法,根据物体的受力情况确定物体的运动情况和根据物体运动情况求解受力情况。这一节我们继续学习用牛顿运动定律解题。我们常见的物体的运动状态有哪些种类?我们常见的运动有变速运动和匀速运动,最常见的是物体静止的情况。如果物体受力平衡,那么物体的运动情况如何?如果物体受力平衡的话,物体将做匀速直线运动或静止,这要看物体的初速度情况。[新课教学]一、共点力的平衡条件几个力都作用在物体的同一点,或者它们的作用线相交于同一点,这几个力就叫做共点力。1、平衡状态桌上的书、屋顶的灯,虽然都受到力的作用,但仍保持静止。火车车厢虽然受到重力、支持力、牵引力、阻力的作用,但仍可能做匀速直线运动。如果一个物体在力的作用下,保持静止或匀速直线运动状态,我们就说这个物体处于平衡状态(equilibrium)。(1)平衡状态一个物体在共点力的作用下,如果保持静止或者做匀速直线运动,我们就说这个物体处于平衡状态。(2)静平衡与动平衡①静平衡物体受到几个力的作用,仍保持静止,这种平衡称为静平衡;②动平衡物体受到几个力的作用,处于匀速直线运动状态或匀速转动状态,这种平衡称为动平衡。物体处于静平衡或动平衡,受力状况是没有区别的,区别的只在于物体的初始运动状态。(3)平衡状态的特征①速度矢量恒定;②a=0。2、共点力的平衡条件有的物体在两个力作用下处于平衡,有的物体在三个力的作用下处于平衡。那么,在共点力作用下的物体在什么条件下才能处于平衡状态呢?(1)理论推导物体处于平衡状态→运动状态不变→加速度为零→根据牛顿第二定律F合=ma→F合=0。反过来也成立,从牛顿第二定律知道→当物体所受合力为零时→加速度为零→物体将保持静止或者做匀速直线运动→即物体处于平衡状态。所以,在共点力作用下物体的平衡条件是合力为零。即F合=0(2)实验验证请三位同学把三个弹簧秤的挂钩挂到同一个物体,在同一平面内分别向三个方向拉弹簧秤,记下弹簧秤的示数和方向。(注意:用力不能太大,以免超出弹性限度)按各力的大小和方向作出力的图示,用力的平行四边形定则,求出三个力的合力。在误差范围内,这三个力的合力为零,从而验证了共点力平衡的条件。(3)共点力作用下物体的平衡条件的几种表述①共点力平衡的矢量条件在共点力作用下物体的平衡条件是合力为零F合=0②共点力平衡的解析条件Fx=0Fy=0③共点力平衡的几何条件根据共点力作用下物体的平衡条件和力的合成的多边形定则可知,共点力平衡的几何条件是:各力首尾相接自行构成封闭的力多边形。(4)共点力作用下物体的平衡条件的推论物体受两个共点力作用平衡,这两个力必大小相等,方向相反,作用在一条直线上。物体受三个共点力作用平衡,则三个力的作用线必相交于同一点。其中任意两个力的合力,一定与第三个力大小相等,方向相反;三个以上力依次类推,而且三个以上的力最终都可归结为三个力的平衡。所以三个力平衡在共点力作用下物体的平衡问题中具有典型性。【巩固训练】①下列关于质点处于平衡状态的论述,正确的是(B)A.质点一定不受力的作用;B.质点一定没有加速度;C.质点一定没有速度;D.质点一定保持静止。②一个物体受到五个共点力F1、F2、F3、F4、F5的作用,处于平衡状态。如果将F3撤去,而其他力保持不变,则F1、F2、F4、F5的合力是多大?方向如何?(大小与F3相等,方向与F3相反);如果将F4、F5两个力撤去,而其余力保持不变,则F1、F2、F3的合力是多大?方向如何?(大小与F4、F5的合力相等,方向与F4、F5的合力方向相反)。3、应用共点力平衡条件解题的一般步骤【例题1】城市中的路灯、无轨电车的供电线路等,经常用三角形的结构悬挂。下图为这类结构的一种简化模型。图中硬杆OB可绕通过B点且垂直于纸面的轴转动,钢索和杆的重量都可忽略。如果悬挂物的重量是G,角AOB等于θ,钢索OA对O点的拉力和杆OB对O点的支持力各是多大?分析我们分析O点受力的情况,它受三个力的作用。绳的拉力F1:沿绳的方向,指向A点。杆的支持力F2:对于重量可以忽略的硬杆,如果它只在两端受力,这两个力必然沿杆的方向,如图所示。悬绳的拉力F3:它的方向向下,大小与悬挂物的重量相等,即F3=G在平衡状态下,三个力的合力应该为0。由此可以求出F1、F2的大小。解如图所示,F1、F2、F3三个力的合力为0,表示这三个力在x方向的分矢量之和及y方向的分矢量之和也都为0。也就是F2-F1cosθ=0①F1sinθ-F3=0②由①②解出钢索OA的拉力F131sinsinFGF===硬杆OB的支持力F222costanGFF===当θ很小时,sinθ和tanθ都接近0,F1和F2就会很大,对材料的强度要求很高,所以钢索的固定点A不能距B太近。但A点过高则材料消耗过多,所以要结合具体情况适当选择θ角。【例题2】沿光滑的墙壁用网兜把一个足球挂在A点,如图所示。足球的质量为m,网兜的质量不计。足球与墙壁的接触点为B,悬绳与墙壁的夹角为α,求悬绳对球的拉力和墙壁对球的支持力。分析:取足球作为研究对象,共受到重力mg、墙的支持力F1,悬绳的拉力F2。这三个力一定是共点力,用平行四边形定则求出G和F1的合力F,这时足球相当于受到F和F2两个力,F和F2两力必共线。已知G和α,由共点力平衡条件即可求出F1和F2。解:取足球作为研究对象,由共点力的平衡条件可知G和F1的合力F与F2大小相等、方向相反,由力的平行四边形可求得:F1=mgtanαF2=mg/cosα[扩展和引申]本题也可用力的分解法、正交分解法和矢量图解法来求解。引导学生做到一题多解。【例题3】物体A在水平力F1=400N的作用下,沿倾角θ=60º的斜面匀速下滑。物体A受的重力G=400N,求斜面对物体A的支持力和A与斜面间的动摩擦因数μ。分析:确定物体A为研究对象,对物体A进行受力分析,画出物体的受力图。物体A共受四个力的作用:竖直向下的重力G,水平向右的力F1,垂直于斜面斜向上方的支持力F2,平行于斜面向上的滑动摩擦里F3,其中G和F1是已知的,由滑动摩擦定律F3=μF2可知,求得F2和F3,就可以求出μ。解:本题采用正交分解法,对于斜面,常取平行于斜面的方向为x轴,垂直于斜面的方向为y轴,将力沿这两个方向分解,分别在这两个方向上应用平衡条件求解,由平衡条件可知,在这两个方向深的合力Fx合和Fy合应分别等于零,即Fx合=F3+F1cosθ-Gsinθ=0Fy合=F2-F1sinθ-Gcosθ=0解得:F2=546N,F3=146N。所以μ=F3/F2=0.27[扩展和引申](1)当沿水平方向的推力F1'多大时,物体沿斜面匀速上滑?(2)当推力沿斜面方向时,求使物体匀速下滑和匀速上滑所需的推力?通过演变不,引导学生逐步学会一题多变,能够做到举一反三。αABF1αGF2FOF1AθθGF1F2F3xy通过例题的求解,归纳得出应用共点力平衡条件解题的一般步骤如下:①弄清题意,确定研究对象。明确哪一个物体(或结点)作为作为解题的研究对象;②正确分析研究对象的受力情况,并画受力图;③判断物体是否处于平衡状态,是否可以用共点力平衡条件求解;④确定解题方法,据物体的受力和已知条件,选择适当的方法,列出平衡方程;⑤解方程,进行讨论和计算,对结果作说明。4、共点力平衡的常用解题方法【例题4】如图所示,细线的一端固定于A点,线的中点挂一质量为m的物体,另一端B用手拉住,当AO与竖直方向成θ角,OB沿水平方向时,AO及BO对O点的拉力分别是多大?解析:先以物体m为研究对象,它受到两个力,即重力和悬线的拉力,因为物体处于平衡状态,所以悬线中的拉力大小为F=mg。再取O点为研究对像,该点受三个力的作用,即AO对O点的拉力F1,BO对O点的拉力F2,悬线对O点的拉力F,如图所示。用力的分解法求解:将F=mg沿F1和F2的反方向分解,得到F′=mgtanθF″=mg/cosθ得到:F1=mg/cosθF2=mgtanθ用正交分解合成法求解:建立平面直角坐标系,由Fx合=0及Fy合=0得到F1cosθ-mg=0F1sinθ-F2=0解得:F1=mg/cosθF2=mgtanθ共点力平衡问题常用的解题方法有:力的合成法、力的分解法、矢量图解法、相似三角形法、正交分解法、比例法等。AOmθBFOF′F″F1F2F=mgOF1F2xyθ5、三力平衡问题中极值的求解方法【例题5】如图所示,在绳下端挂一质量为m的物体,用力F拉绳使悬绳偏离竖直方向α角,且方向,当拉力F与水平方向的夹角θ多大时F有最小值?最小值是多少?常规解析法:以结点O为研究对象,画出受力图,建立坐标轴,如图所示:根据平衡条件有:Fcosθ-Tsinα=0Fsinθ+Tcosα-mg=0由两式消去T可得F=mgsinα/cos(α-θ)所以当(α-θ)=0,即θ=α时F有最小值,且Fmin=mgsinα。此法是求解共点力平衡问题的普遍适用的基本方法,难点在于力的分解和求解方程组。用于求极值,要求有较好的运用数学知识解决物理问题的能力。巧妙建轴解析法:以结点O为研究对象,画出受力图,建立坐标轴,如图所示。根据几何条件可得,力F与轴之间的夹角为(α-θ)。根据x轴
本文标题:用牛顿运动定律解决问题
链接地址:https://www.777doc.com/doc-6747034 .html