您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 沪科版九年级上数学《二次函数》单元测试题及答案
九年级数学二次函数单元测试题及答案一、选择题(每题3分,共30分)1.下列关系式中,属于二次函数的是(x为自变量)()A.B.C.D.2.函数y=x2-2x+3的图象的顶点坐标是()A.(1,-4)B.(-1,2)C.(1,2)D.(0,3)3.抛物线y=2(x-3)2的顶点在()A.第一象限B.第二象限C.x轴上D.y轴上4.抛物线的对称轴是()A.x=-2B.x=2C.x=-4D.x=45.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是()A.ab0,c0B.ab0,c0C.ab0,c0D.ab0,c06.二次函数y=ax2+bx+c的图象如图所示,则点在第___象限()A.一B.二C.三D.四7.如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m4,那么AB的长是()A.4+mB.mC.2m-8D.8-2m8.若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是()9.已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线上的点,且-1x1x2,x3-1,则y1,y2,y3的大小关系是()A.y1y2y3B.y2y3y1C.y3y1y2D.y2y1y310.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.B.C.D.二、填空题(每题4分,共32分)11.二次函数y=x2-2x+1的对称轴方程是______________.12.若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________.13.若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.14.抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.15.已知二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC是直角三角形,请写出一个符合要求的二次函数解析式________________.16.在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面_________m.17.试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.18.已知抛物线y=x2+x+b2经过点,则y1的值是_________.三、解答下列各题(19、20每题9分,21、22每题10分,共38分)19.若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0)(1)求此二次函数图象上点A关于对称轴对称的点A′的坐标;(2)求此二次函数的解析式;20.在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k-5)x-(k+4)的图象交x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8.(1)求二次函数解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.21.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.22.某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.答案与解析:一、选择题1..选A.2.答案选C.解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k),y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),3.解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x轴上,答案选C.4.考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为.解析:抛物线,直接利用公式,其对称轴所在直线为答案选B.5.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,答案选C.6.考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,在第四象限,答案选D.7.解析:因为二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交x轴于点D,所以A、B两点关于对称轴对称,因为点A(m,0),且m4,所以AB=2AD=2(m-4)=2m-8,答案选C.8.解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴左侧,交坐标轴于(0,0)点.答案选C.9.解析:因为抛物线的对称轴为直线x=-1,且-1x1x2,当x-1时,由图象知,y随x的增大而减小,所以y2y1;又因为x3-1,此时点P3(x3,y3)在二次函数图象上方,所以y2y1y3.答案选D.10.:二次函数图象的变化.抛物线的图象向左平移2个单位得到,再向上平移3个单位得到.答案选C.二、填空题11.解析:二次函数y=x2-2x+1,所以对称轴所在直线方程.答案x=1.12.解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.13.解析:二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0的两个根,求得x1=-1,x2=3,则AB=|x2-x1|=4.答案为4.14.解析:因为抛物线经过A(-1,0),B(3,0)两点,解得b=-2,c=-3,答案为y=x2-2x-3.15.解析:需满足抛物线与x轴交于两点,与y轴有交点,及△ABC是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-1.16.解析:直接代入公式,答案:7.17.解析:如:y=x2-4x+3.18.答案:三、解答题19.考点:二次函数的概念、性质、图象,求解析式.解析:(1)A′(3,-4)(2)由题设知:∴y=x2-3x-4为所求(3)20.解析:(1)由已知x1,x2是x2+(k-5)x-(k+4)=0的两根又∵(x1+1)(x2+1)=-8∴x1x2+(x1+x2)+9=0∴-(k+4)-(k-5)+9=0∴k=5∴y=x2-9为所求(2)由已知平移后的函数解析式为:y=(x-2)2-9且x=0时y=-5∴C(0,-5),P(2,-9).21.解:(1)依题意:(2)令y=0,得(x-5)(x+1)=0,x1=5,x2=-1∴B(5,0)由,得M(2,9)作ME⊥y轴于点E,则可得S△MCB=15.22.总利润=单个商品的利润×销售量.要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大.因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x元,商品的售价就是(13.5-x)元了.单个的商品的利润是(13.5-x-2.5)这时商品的销售量是(500+200x)总利润可设为y元.利用上面的等量关式,可得到y与x的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润.解:设销售单价为降价x元.顶点坐标为(4.25,9112.5).即当每件商品降价4.25元,即售价为13.5-4.25=9.25时,可取得最大利润9112.5元
本文标题:沪科版九年级上数学《二次函数》单元测试题及答案
链接地址:https://www.777doc.com/doc-6757478 .html