您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 切线长定理和三角形的内切圆
●O●O相交●O相切相离复习1:直线与圆的位置关系rrr┐dd┐d┐直线和圆相交dr;直线和圆相切直线和圆相离d=r;dr;复习2:1、切线的判定定理是什么?2、切线的性质定理是什么3、角平分线的性质是什么?4、什么叫三角形的外接圆和外心?外心是三角形什么的交点?我们知道,过圆上一点可以作圆的一条切线,那么过圆外一点可以作圆的几条切线呢?探究:··oo′p1.连结OP2.以OP为直径作⊙O′,与⊙O交于A、B两点。AB即直线PA、PB为⊙O的切线如图,已知⊙O外一点P,你能用尺规过点P作⊙O的切线吗?通过作图你能发现什么呢?1.过圆外一点作圆的切线可以作两条2.点A和点B关于直线OP对称经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。切线长是一条线段•切线是直线,不能度量;•切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量。OPAB·opAB如图,PA、PB是⊙O的切线,A、B为切点。如果连结OA、OB、OP,图中的PA与PB,∠APO与∠BPO有什么关系?∵PA、PB是⊙O的切线,A、B为切点∴OA⊥PA,OB⊥PB又∵OA=OB,OP=OP∴Rt△AOP≌Rt△BOP∴PA=PB,∠APO=∠BPO切线长定理:从圆外一点可以引圆的两条切线,切线长相等,这一点和圆心的连线平分两条切线的夹角。·opAB∵PA、PB是⊙O的切线,A、B为切点∴PA=PB,∠APO=∠BPO如图,若连接AB,则OP与AB有什么关系?∵PA、PB是⊙O的切线,A、B为切点∴PA=PB,∠APO=∠BPO∴OP⊥AB,且OP平分ABCD从圆外一点引圆的两条切线,圆心和这一点的连线垂直平分切点所成的弦;平分切点所成的弧。AD与BD相等吗?⌒⌒例1已知,如图,PA、PB是⊙O的两条切线,A、B为切点.直线OP交⊙O于点D、E,交AB于C.(1)写出图中所有的垂直关系;(2)写出图中所有的全等三角形.(3)如果PA=4cm,PD=2cm,求半径OA的长.AOCDPBE解:(1)OA⊥PA,OB⊥PB,OP⊥AB(2)△OAP≌△OBP,△OCA≌△OCB△ACP≌△BCP.(3)设OA=xcm,则PO=PD+x=2+x(cm)在Rt△OAP中,由勾股定理,得PA2+OA2=OP2即42+x2=(x+2)2解得x=3cm所以,半径OA的长为3cm.·P·OABc如图,P为⊙O外一点,PA、PB分别切⊙O于A、B两点,OP交⊙O于C,若PA=6,PC=2,求⊙O的半径OA及两切线PA、PB的夹角。3解:连接OA、AC,则OA⊥AP在Rt△AOP中,设OA=x则OP=x+23∴OA2+PA2=OP2即x2+62=(x+2)23解得x=2,即OA=OC=233∴OP=43在Rt△AOP中,OP=2OA∴∠APO=30°∵PA、PB是⊙O的切线∴∠APB=2∠APO=60°∴⊙O的半径为2,两切线的夹角为60°3·ABCDEO21例2如图,已知:在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆交AB于点E,交AC与点D。求证:DE∥OC证明:连接BD.∵∠ABC=90°,OB为⊙O的半径∴CB是⊙O的切线∵AD是⊙O的切线,D是切点∴CD=CB,∠1=∠2∴OC⊥BD∵BE是⊙O的直径∴∠BDE=90°,即DE⊥BD∴DE∥OC·如图所示是一张三角形的铁皮,如何在它上面剪下一块圆形的用料,并且使圆的面积尽可能大呢?·ABCABCMDNI与三角形各边都相切的圆叫做三角形的内切圆;三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心;这个三角形叫做圆的外切三角形。1.一个三角形有且只有一个内切圆;2.一个圆有无数个外切三角形;3.三角形的内心就是三角形三条内角平分线的交点;4.三角形的内心到三角形三边的距离相等。.o外接圆圆心:三角形三边垂直平分线的交点。外接圆的半径:交点到三角形任意一个顶点的距离。三角形外接圆三角形内切圆.o内切圆圆心:三角形三个内角平分线的交点。内切圆的半径:交点到三角形任意一边的垂直距离。AABBCC例1△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.解:设AF=x(cm),BD=y(cm),CE=z(cm)∴AF=4(cm),BD=5(cm),CE=9(cm).∵⊙O与△ABC的三边都相切∴AF=AE,BD=BF,CE=CD则有x+y=9y+z=14x+z=13解得x=4y=5z=9例2.如图,四边形ABCD的边AB、BC、CD、DA和⊙O分别相切于L、M、N、P。(1)图中有几对相等的线段?ADLMNPOCB(2)由此你能发现什么结论?为什么?解:∵AB,BC,CD,DA都与⊙O相切,L,M,N,P是切点,∴AL=AP,LB=MB,DN=DP,NC=MC∴AL+LB+DN+NC=AP+MB+DP+MC即AB+CD=AD+BC圆的外切四边形的两组对边的和相等(可做定理用)PABO1、已知⊙O的半径为3cm,点P和圆心O的距离为6cm,经过点P有⊙O的两条切线,则切线长为______cm。这两条切线的夹角为_____度。60练习:2、已知圆外切四边形ABCD中,AB:BC:CD=4:3:2,它的周长为24cm。则AB=,BC=;CD=,DA=。ADOCB8cm6cm4cm6cm·BDEFOCA如图,△ABC的内切圆的半径为r,△ABC的周长为l,求△ABC的面积S.解:设△ABC的内切圆与三边相切于D、E、F,连结OA、OB、OC、OD、OE、OF,则OD⊥AB,OE⊥BC,OF⊥AC.∴S△ABC=S△AOB+S△BOC+S△AOC=AB·OD+BC·OE+AC·OF21212121=l·r设△ABC的三边为a、b、c,面积为S,则△ABC的内切圆的半径r=2Sa+b+c三角形的内切圆的有关计算ABCabcrr=a+b-c2练习:直角三角形的两直角边分别是5cm,12cm则其内切圆的半径为______。探究直角三角形的两直角边分别是a,b,斜边是c,则其内切圆的半径r与三边的关系是什么?2cm.·ABCEDFO如图,Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,⊙O为Rt△ABC的内切圆.求:Rt△ABC的内切圆的半径r.设AD=x,BE=y,CE=r∵⊙O与Rt△ABC的三边都相切∴AD=AF,BE=BF,CE=CD则有x+r=by+r=ax+y=c解:设Rt△ABC的内切圆与三边相切于D、E、F,连结OD、OE、OF则OA⊥AC,OE⊥BC,OF⊥AB。解得r=a+b-c2设Rt△ABC的直角边为a、b,斜边为c,则Rt△ABC的内切圆的半径r=或r=a+b-c2aba+b+c·ABCEDFO如图,Rt△ABC中,∠C=90°,BC=3,AC=4,⊙O为Rt△ABC的内切圆.(1)求Rt△ABC的内切圆的半径.(2)若移动点O的位置,使⊙O保持与△ABC的边AC、BC都相切,求⊙O的半径r的取值范围。设AD=x,BE=y,CE=r∵⊙O与Rt△ABC的三边都相切∴AD=AF,BE=BF,CE=CD则有x+r=4y+r=3x+y=5解:(1)设Rt△ABC的内切圆与三边相切于D、E、F,连结OD、OE、OF则OA⊥AC,OE⊥BC,OF⊥AB。解得r=1在Rt△ABC中,BC=3,AC=4,∴AB=5由已知可得四边形ODCE为正方形,∴CD=CE=OD∴Rt△ABC的内切圆的半径为1。(2)如图所示,设与BC、AC相切的最大圆与BC、AC的切点分别为B、D,连结OB、OD,则四边形BODC为正方形。·ABODC∴OB=BC=3∴半径r的取值范围为0<r≤3几何问题代数化是解决几何问题的一种重要方法。练习:1.既有外接圆,又内切圆的平行四边形是______.2.直角三角形的外接圆半径为5cm,内切圆半径为1cm,则此三角形的周长是_______.3.⊙O是边长为2cm的正方形ABCD的内切圆,EF切⊙O于P点,交AB、BC于E、F,则△BEF的周长是_____.EFHG正方形22cm2cm1、切线长的定义2、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。小结:APO。BECD∵PA、PB分别切⊙O于A、B∴PA=PB,∠OPA=∠OPBOP垂直平分AB切线长定理为证明线段相等,角相等,弧相等,垂直关系提供了理论依据。必须掌握并能灵活应用。3、三角形的内切圆和内心4、圆的外切四边形的两组对边的和相等知识像一艘船让它载着我们驶向理想的……20121023
本文标题:切线长定理和三角形的内切圆
链接地址:https://www.777doc.com/doc-6776308 .html