您好,欢迎访问三七文档
第1页共5页高中数学第十四章导导数数考试内容:导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)掌握函数,y=c(c为常数)、y=xn(n∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值.§14.导导数数知知识识要要点点导数导数的概念导数的运算导数的应用导数的几何意义、物理意义函数的单调性函数的极值函数的最值常见函数的导数导数的运算法则第2页共5页1.导数(导函数的简称)的定义:设0x是函数)(xfy定义域的一点,如果自变量x在0x处有增量x,则函数值y也引起相应的增量)()(00xfxxfy;比值xxfxxfxy)()(00称为函数)(xfy在点0x到xx0之间的平均变化率;如果极限xxfxxfxyxx)()(limlim0000存在,则称函数)(xfy在点0x处可导,并把这个极限叫做)(xfy在0x处的导数,记作)(0'xf或0|'xxy,即)(0'xf=xxfxxfxyxx)()(limlim0000.注:①x是增量,我们也称为“改变量”,因为x可正,可负,但不为零.②以知函数)(xfy定义域为A,)('xfy的定义域为B,则A与B关系为BA.2.函数)(xfy在点0x处连续与点0x处可导的关系:⑴函数)(xfy在点0x处连续是)(xfy在点0x处可导的必要不充分条件.可以证明,如果)(xfy在点0x处可导,那么)(xfy点0x处连续.事实上,令xxx0,则0xx相当于0x.于是)]()()([lim)(lim)(lim0000000xfxfxxfxxfxfxxxx).()(0)()(limlim)()(lim)]()()([lim000'0000000000xfxfxfxfxxfxxfxfxxxfxxfxxxx第3页共5页⑵如果)(xfy点0x处连续,那么)(xfy在点0x处可导,是不成立的.例:||)(xxf在点00x处连续,但在点00x处不可导,因为xxxy||,当x>0时,1xy;当x<0时,1xy,故xyx0lim不存在.注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3.导数的几何意义:函数)(xfy在点0x处的导数的几何意义就是曲线)(xfy在点))(,(0xfx处的切线的斜率,也就是说,曲线)(xfy在点P))(,(0xfx处的切线的斜率是)(0'xf,切线方程为).)((0'0xxxfyy4.求导数的四则运算法则:''')(vuvu)(...)()()(...)()(''2'1'21xfxfxfyxfxfxfynn''''''')()(cvcvvccvuvvuuv(c为常数))0(2'''vvuvvuvu注:①vu,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设xxxf2sin2)(,xxxg2cos)(,则)(),(xgxf在0x处均不可导,但它们和)()(xgxfxxcossin在0x处均可导.5.复合函数的求导法则:)()())(('''xufxfx或xuxuyy'''复合函数的求导法则可推广到多个中间变量的情形.6.函数单调性:第4页共5页⑴函数单调性的判定方法:设函数)(xfy在某个区间内可导,如果)('xf>0,则)(xfy为增函数;如果)('xf<0,则)(xfy为减函数.⑵常数的判定方法;如果函数)(xfy在区间I内恒有)('xf=0,则)(xfy为常数.注:①0)(xf是f(x)递增的充分条件,但不是必要条件,如32xy在),(上并不是都有0)(xf,有一个点例外即x=0时f(x)=0,同样0)(xf是f(x)递减的充分非必要条件.②一般地,如果f(x)在某区间内有限个点处为零,在其余各点均为正(或负),那么f(x)在该区间上仍旧是单调增加(或单调减少)的.7.极值的判别方法:(极值是在0x附近所有的点,都有)(xf<)(0xf,则)(0xf是函数)(xf的极大值,极小值同理)当函数)(xf在点0x处连续时,①如果在0x附近的左侧)('xf>0,右侧)('xf<0,那么)(0xf是极大值;②如果在0x附近的左侧)('xf<0,右侧)('xf>0,那么)(0xf是极小值.也就是说0x是极值点的充分条件是0x点两侧导数异号,而不是)('xf=0①.此外,函数不可导的点也可能是函数的极值点②.当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①:若点0x是可导函数)(xf的极值点,则)('xf=0.但反过来不一定成立.对于可导函数,其一点0x是极值点的必要条件是若函数在该点可导,则导数值为零.例如:函数3)(xxfy,0x使)('xf=0,但0x不是极值点.②例如:函数||)(xxfy,在点0x处不可导,但点0x是函数的极小值点.8.极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进第5页共5页行比较.注:函数的极值点一定有意义.9.几种常见的函数导数:I.0'C(C为常数)xxcos)(sin'2'11)(arcsinxx1')(nnnxx(Rn)xxsin)(cos'2'11)(arccosxxII.xx1)(ln'exxaalog1)(log'11)(arctan2'xxxxee')(aaaxxln)('11)cot(2'xxarcIII.求导的常见方法:①常用结论:xx1|)|(ln'.②形如))...()((21naxaxaxy或))...()(())...()((2121nnbxbxbxaxaxaxy两边同取自然对数,可转化求代数和形式.③无理函数或形如xxy这类函数,如xxy取自然对数之后可变形为xxylnln,对两边求导可得xxxxxyyxyyxxxyylnln1ln'''.
本文标题:高中数学知识点导数
链接地址:https://www.777doc.com/doc-6815284 .html