您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 12.2全等三角形的判定(3)ASA和AAS教案
1课时教案课题§12.2全等三角形的判定(3)——ASA和AAS教材分析1.本节的主要内容是探索三角形全等的条件,及利用全等三角形进行证明.2.为了让学生经历一个完整地探索三角形全等的过程,教科书给了两个探究。探究一让学生从满足六个条件中的一个或两个入手,探究在这样的情形下能否保证两个三角形全等.从探究二开始让学生探究满足六个条件中的三个能否保证两个三角形全等,本次课主要探究ASA的情形.学情分析学生刚刚认识了全等三角形以及全等三角形的性质,对判定两个三角形全等暂时还不太熟悉,所以让孩子们通过自己的探究来得出两个角和一条边对应相等,两三角形全等的结论还是非常有必要的.重点ASA,AAS难点ASA,AAS的理解与灵活应用教学方法1.教师教法:启发式引导发现法.2.学生学法:独立思考,主动发现.教学内容及过程教学环节教学内容学习内容设计意图复习回顾1.什么是全等三角形?2.判定两个三角形全等要具备什么条件?边边边(SSS)边角边(SAS)思考:如果两个三角形中只有一组对应边相等,那么还需要什么条件能够判断两个三角形全等呢?问题1:如果已知一个三角形的两角及一边,那么有几种可能的情况呢?角边角(ASA)角角边(AAS)设置情境引入课题探究1:一张教学用的三角形硬纸板不小心被撕坏了(如下图),你能制作一张与原来同样大小的新教具吗?能恢复原来三角形的原貌吗?2分析问题探究新知分析问题探究新知探究1反映的规律是:两角和它们的夹边对应相等的两个三角形全等.(可以简写成“角边角”或“ASA”)用数学符号表示:3举一反三巩固新知例1.已知:点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:(1)AD=AE;(2)BD=CE练习1:已知:如图,∠1=∠2,∠3=∠4求证:AC=AD探究2:如下图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?证明:在△ABC和△DEF中,∠A+∠B+∠C=1800,∠D+∠E+∠F=1800,∵∠A=∠D,∠B=∠E,∴∠C=∠F,∴∠B=∠E,BC=EF,∠C=∠F,∴△ABC≌△DEF(ASA)探究2反映的规律是:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)4用数学符号表示:例2:如图,O是AB的中点,∠A=∠B,△AOC与△BOD全等吗?为什么?变式:如图,O是AB的中点,∠C=∠D,△AOC与△BOD全等吗?为什么?1、如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?52.已知:如图∠B=∠DEF,BC=EF,求证:ΔABC≌ΔDEF(1)若要以“SAS”为依据,还缺条件______;(2)若要以“ASA”为依据,还缺条件______;(3)若要以“SSS”为依据,还缺条件______;(4)若要以“AAS”为依据,还缺条件______课堂小结本节课你的收获是什么?检测题1.已知:如图,在ABC中,D、E、F分别是AB、AC、BC上的点,连接DE、EF,AB∥EF,DE∥BC,DE=FC.求证:ADE≌EFC2、已知:如图,∠1=∠2,∠3=∠4.求证:ABC≌ABD板书设计背投作业数学新目标检测:P25抽测数学新目标检测:P25T5教学反思
本文标题:12.2全等三角形的判定(3)ASA和AAS教案
链接地址:https://www.777doc.com/doc-6909040 .html