您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 王镜岩生物化学第四版考研必备复习资料
生物化学终极复习1简述DNA碱基组成的Chargaff规则。答:⑴按摩尔数计算,则A=T、G=C,即A+G=T+C⑵同一生物不同组织,其DNA碱基组成相同⑶不同生物,其DNA碱基组成往往不同⑷DNA碱基组成不随年龄、营养状况和环境因素而变化。2试比较两类核酸的化学组成、分子结构、分布及生物学作用。⑴DNA与RNA化学组成的比较碱基戊糖磷酸DNAA、G、C、Tβ-D-2’脱氧核糖磷酸RNAA、G、C、Uβ-D-核糖磷酸⑵分子结构:一级结构两者的概念相同,但基本组成单位不同。二级结构:DNA为双螺旋结构;RNA一般为单链分子,可形成局部双螺旋,呈茎–环结构,如tRNA的三叶草结构。三级结构:原核生物DNA为超螺旋,真核生物DNA与蛋白质组装成染色质(染色体);RNA的三级结构是其二级结构的进一步卷曲折叠所致,如tRNA的倒L型。⑶分布:DNA存在于细胞核和线粒体;RNA存在于细胞质和细胞核内。⑷生物学作用:DNA是绝大多数生物遗传信息的贮存和传递者,与生物的繁殖、遗传及变异等有密切关系;RNA参与蛋白质生物合成过程,也可作为某些生物遗传信息的贮存和传递者。3举例说明竞争性抑制的特点和实际意义答;竞争性抑制的特点:竞争性抑制剂与底物的结构类似;抑制剂结合在酶的活性中心;增大底物浓度可降低抑制剂的抑制程度;Km↑,Vmax不变。如磺胺药与PABA的结构类似,PABA是某些细菌合成二氢叶酸(DHF)的原料,DHF可转变成四氢叶酸(THF)。THF是一碳单位代谢的辅酶,而一碳单位是合成核苷酸不可缺少的原料。由于磺胺药能与PABA竞争结合二氢叶酸合成酶的活性中心。DHF合成受抑制,THF也随之减少,使核酸合成障碍,导致细菌死亡。4比较三种可逆性抑制作用的特点答:竞争性抑制:抑制剂的结构与底物结构相似;共同竞争酶的活性中心;增大底物浓度可降低抑制剂的抑制程度;Km↑,Vmax不变。非竞争性抑制:抑制剂结合在酶活性中心以外的部位,不影响酶与底物的结合,该抑制作用的强弱只与抑制剂的浓度有关。Km不变,Vmax下降。反竞争性抑制:抑制剂只与酶-底物复合物结合,生成的三元复合物不能解离出产物,Km和Vmax均下降。1.简述血糖的来源和去路。血糖的来源:⑴食物经消化吸收的葡萄糖;⑵肝糖原分解;⑶糖异生。血糖的去路:⑴氧化供能;⑵合成糖原;⑶转变为脂肪及某些非必需氨基酸;⑷转变为其他糖类物质。2简述糖异生的生理意义。⑴空腹或饥饿时利用非糖化合物异生成葡萄糖,以维持血糖水平恒定。⑵糖异生是肝脏补充或恢复糖原储备的重要途径。⑶调节酸碱平衡3试述乳酸异生为葡萄糖的主要反应过程及其酶。⑴乳酸经LDH催化生成丙酮酸。⑵丙酮酸在线粒体内经丙酮酸羧化酶催化生成草酰乙酸,后者经GOT催化生成天冬氨酸出线粒体,在胞液中经GOT催化生成草酰乙酸,后者在磷酸烯醇式丙酮酸羧激酶作用下生成磷酸烯醇式丙酮酸。⑶磷酸烯醇式丙酮酸循糖酵解途径逆行至1,6-双磷酸果糖。⑷1,6-双磷酸果糖经果糖双磷酸酶-1催化生成F-6-P,再异构为G-6-P。⑸G-6-P在葡萄糖-6-磷酸酶作用下生成葡萄糖。1.简述脂类的生理功能。1.脂肪的主要生理功能是储能和氧化供能,脂肪中的必需脂酸是某些生理活性物质的前体;类脂参与生物膜的组成,参与细胞识别、信息传递及转化为某些生理活性物质。简述血脂的来源与去路。⑴来源:外源性,即从食物摄取的脂类经消化吸进入血液;内源性,即由肝,脂肪细胞以及其它组织合成后释放入血。⑵去路:氧化分解;进入脂库储存;构成生物膜;转变为其它物质。1.血浆脂蛋白的分类、化学组成特点及主要功能:分类电泳分类CMpreβ-LPβ-LPα-LP密度分类CMVLDLLDLHDL化学组成特点富含TG(占80%-95%)富含TG(占60%-70%)富含Ch(占48%-70%)富含蛋白质(占80%-95%)合成部位小肠粘膜细胞肝细胞血浆肝、小肠主要生理功能转运外源性TG及Ch转运内源性TG转运内源性Ch逆向转运Ch(肝外→肝)1.试述影响氧化磷酸化的主要因素。⑴ADP/ATP比值:是调节氧化磷酸化的基本因素,ADP/ATP增高时,氧化磷酸化速度加快,促使ADP转变为ATP。⑵甲状腺素:通过使ATP水解为ADP和Pi,使氧化磷酸化加快。⑶呼吸链抑制剂:可阻断呼吸链中某一环节的电子传递,从而抑制氧化磷酸化。⑷解偶联剂:能使氧化与磷酸化偶联过程脱离,使ATP不能合成,但不阻断呼吸链中电子传递。⑸氧化磷酸化抑制剂:对电子传递及ADP磷酸化均有抑制作用。⑹线粒体DNA突变。2.简述肠道氨的来源。肠道中氨来自细菌对氨基酸的脱氨基作用和尿素随血液循环扩散到肠道经尿素酶水解生成氨。1.试述谷氨酸经代谢可生成哪些物质?⑴谷氨酸经谷氨酸脱氢酶催化生成α-酮戊二酸+NH3。⑵谷氨酸经谷氨酰胺合成酶催化生成谷氨酰胺。⑶谷氨酸经糖异生途经生成葡萄糖或糖原。⑷谷氨酸是编码氨基酸,参与蛋白质合成。⑸谷氨酸参与尿素合成。⑹谷氨酸经谷氨酸脱羧酶催化生成r-氨基丁酸。⑺谷氨酸经转氨酶催化合成非必需氨基酸。1.简述核苷酸的生物功用。核苷酸具有多种生物功用:⑴作为核酸DNA和RNA合成的基本原料;⑵体内的主要能源物质,如ATP、GTP等;⑶参与代谢和生理性调节作用,如cAMP是细胞内第二信号分子,参与细胞内信号传递;⑷作为许多辅酶组成部分,如腺苷酸是构成NAD+、NADP+、FAD、CoA等的重要部分;⑸活化中间代谢物的载体,如UDPG是合成糖原等的活性原料,CDP-二酰基甘油是合成磷脂的活性原料,PAPS是活性硫酸的形式,SAM是活性甲基的载体等。1.酶的化学修饰调节的特点:⑴被修饰酶具有无活性和有活性两种形式存在。⑵与变构调节不同,酶促化学修饰调节是通过酶蛋白分子共价键的改变而实现的,有放大效应。⑶磷酸化与去磷酸最常见的化学修饰调节。1.举例说明酶的分隔分布在细胞水平代谢调节中的重要作用。一个代谢途径的相关酶类常组成一个酶体系,分布于细胞的某一区域或亚细胞结构中,这就是酶的隔离分布。如:糖酵解、糖原合成与分解、脂酸合成等的酶系均存在于胞液中;三羧酸循环、氧化磷酸化、脂酰基β-氧化等的酶系则分布于线粒体,而核酸合成酶系集中于细胞核内。酶在细胞内的隔离分布使有关代谢途径分别在细胞不同区域内进行,这样不致使各种代谢途径互相干扰。例如脂酸的合成是以乙酰CoA为原料在胞浆内进行,而脂酸β氧化生成乙酰CoA则是在线粒体中进行,这样,二者不致互相干扰产生乙酰CoA的无效循环。1.试述乳糖操纵子的调控原理。1.⑴乳糖操纵子的结构:含Z、Y、A3个结构基因,分别编码乳糖代谢的三个酶;一个操纵序列O,一个启动序列P,一个CAP结合位点和一个调节基因I共同构成乳糖操纵子的调控区。⑵阻遏蛋白的负性调节:I基因的表达产物为一种阻遏蛋白。在没有乳糖存在时,阻遏蛋白与O序列结合,阻碍RNA聚合酶与P序列结合,抑制转录起动,乳糖操纵子处于阻遏状态;当有乳糖存在时,乳糖转变为半乳糖,后者结合阻遏蛋白,使构象变化,阻遏蛋白与O序列解离,在CAP蛋白协作下发生转录。⑶CAP的正性调节:分解代谢基因激活蛋白(CAP)分子内存在DNA和cAMP结合位点。当没有葡萄糖时,cAMP浓度较高,cAMP与CAP结合,cAMP-CAP结合于CAP结合位点,提高RNA转录活性;当有葡萄糖时,cAMP浓度降低,cAMP与CAP结合受阻,乳糖操纵子表达下降。⑷协调调节:乳糖操纵子阻遏蛋白的负性调节与CAP的正性调节机制协调合作,CAP不能激活被阻遏蛋白封闭基因的表达,但如果没有CAP存在来加强转录活性,即使阻遏蛋白从操纵序列上解离仍无转录活性。2,3-BPG是如何调节血红蛋白的携氧功能?2,3-BPG是一个电负性很高的分子,可与Hb结合,其结合部位在Hb分子四个亚基的对称中心孔穴内。2,3-BPG的负电基团与孔穴侧壁的带正电基团形成盐键,从而使Hb分子的T构象更趋稳定,降低Hb与氧的亲和力。当血流经过PO2较高的肺部时,2,3-BPG的影响不大,而当血流经过PO2较低的组织时,红细胞中2,3-BPG的存在则显著增加O2释放,以供组织需要。在PO2相同条件下,2,3-BPG浓度增大,HbO2释放的O2增多,即人体可通过改变红细胞内2,3-BPG的浓度来调节对组织的供氧状况。.简述PCR的工作原理及基本反应步骤。PCR的中文全称为聚合酶链反应。PCR的工作原理是以待扩增的DNA分子为模板,以一对分别与模板5’-末端和3’-末端相互补的寡核苷酸片段为引物,在DNA聚合酶的作用下,按照半保留复制的机制,沿着模板链延伸合成新的DNA链,即可使目的DNA片段得到上百万倍的扩增。PCR的基本反应步骤包括:①变性:将反应系统加热至95℃,使模板DNA完全变性成为单链,同时引物自身和引物之间存在的局部双链也得以消除;②退火:将温度下降至适宜温度,使引物与模板DNA退火结合;③延伸:将温度升至72℃,DNA聚合酶以dNTP为底物催化DNA的合成反应。上述三步构成一个循环,新合成的DNA分子继续作为下一轮合成的模板,经多次循环(20~30次)后,即可达到扩增DNA片段的目的。蛋白质的合成1.简要真核生物的蛋白质合成特点。答案:真核生物的蛋白质合成与原核生物基本相同,只是过程更加复杂一些,其特点如下:(1)真核生物核糖体更大更复杂,分子量为80S,小亚基40S、大亚基60S。(2)真核细胞的起始氨基酸也是甲硫氨酸(蛋氨酸),但不需要进行甲酰化。(3)真核细胞的mRNA无SD序列,但其5′端有“帽子”结构,该结构可促进mRNA与核糖体的结合及蛋白质合成起始复合物的形成。(4)真核细胞mRNA是单顺反子,即一种RNA只能翻译产生一种蛋白质。(5)真核生物的蛋白质合成与mRNA的转录过程不同时进行。(6)真核生物的翻译过程需要更多的蛋白因子参与。有13种起始因子、2种延长因子和1种终止因子。2,蛋白质翻译的步骤蛋白质生物合成的过程分四个步骤:氨基酸活化、肽链合成的起始、延伸、终止和释放。其中,氨基酸活化即氨酰tRNA的合成,反应由特异的氨酰tRNA合成酶催化,在胞液中进行。氨酰tRNA合成酶既能识别特异的氨基酸,又能辩认携带该氨酰基的一组同功受体tRNA分子。肽链合成的起始对于大肠杆菌等原核细胞来说,是70S起始复合物的形成。它需要核糖体30S和50S亚基、带有起始密码子AUG的mRNA、fMet-tRNAf、起始因子IF1、IF2、IF3(分子量分别为10000、80000和21000的蛋白质)以及GTP和Mg2+的参加。肽链合成的延伸需要70S起始复合物、氨酰-tRNA、三种延伸因子:一种是热不稳定的EF-Tu,另一种是热稳定的EF-s,第三种是依赖GTP的EF-G以及GTP和Mg2+。肽链合成的终止和释放需要三个终止因子RF1、RF2、RF3蛋白的参与。3、原核生物多肽链的合成过程原核生物多肽链的合成分为三个阶段:肽链合成的起始、肽链的延伸、肽链合成的终止和释放。蛋白质合成的起始:1.在IF1的作用下,70S亚基解离两个小亚基。2.IF3与30S亚基结合,防止两个亚基再结合。然后IF1和IF2再与30S亚基结合。3.然后再与mRNA结合(SD序列),P位正好对准起始密码子。IF2与fMet-tRNAiMet结合,再与30S亚基结合fMet-tRNAiMet进入P位。GTP分子与30S亚基结合。形成30S起始复合物。4.50S亚基结合上来,IF1和IF3离开。5.GTP水解同时IF2离开,形成70S起始复合物。肽链的延伸1.转肽与肽键的形成起始复合物形成后,P位已被占据,A位仍空着。在延伸因子EF-Tu和GTP的帮助下,氨酰基-tRNA进入A位。在肽基转移酶作用下,P位的fMet或肽基与A位的氨基形成肽键。2.转位肽键在A位形成后,转位因子EF-G和GTP结合上去。然后GTP水解释能促进A位的肽基-tRNA移到P位,同时释放EF-G和GDP(甾酸霉素抑制释放)。3.两类因子的交替作用在EF-Tu和GTP帮助下新的氨酰基-tRNA进入A位。重复上述过程。4.Ts循环延伸因子EF-Ts可以置换EF-Tu
本文标题:王镜岩生物化学第四版考研必备复习资料
链接地址:https://www.777doc.com/doc-6918933 .html