您好,欢迎访问三七文档
坐标的轮换对称性:简单的说就是将坐标轴重新命名,如果积分区间的函数表达不变,则被积函数中的x,y,z也同样作变化后,积分值保持不变。特点及规律:(1)对于曲面积分,积分曲面为u(x,y,z)=0,如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)仍等于0,即,也就是积分曲面的方程没有变,那么在这个曲面上的积分∫∫f(x,y,z)dS=∫∫f(y,z,x)dS;如果将函数u(x,y,z)=0中的x,y,z换成y,x,z后,u(y,z,x)=0那么在这个曲面上的积分∫∫f(x,y,z)dS=∫∫f(y,x,z)dS;如果将函数u(x,y,z)=0中的x,y,z换成z,x,y后,u(z,x,y)=0,那么在这个曲面上的积分∫∫f(x,y,z)dS=∫∫f(z,x,y)dS,同样可以进行多种其它的变换。(2)对于第二类曲面积分只是将dxdy也同时变换即可,比如:如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)=0,那么在这个曲面上的积分∫∫f(x,y,z)dxdy=∫∫f(y,z,x)dydz,∫∫f(x,y,z)dydz=∫∫f(y,z,x)dzdx,∫∫f(x,y,z)dzdx=∫∫f(y,z,x)dxdy。(3)将(1)中积分曲面中的z去掉,就变成了曲线积分满足的轮换对称性:积分曲线为u(x,y)=0,如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)=0,那么在这个曲线上的积分∫∫f(x,y)ds=∫∫f(y,x)ds;实际上如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)=0,则意味着积分曲线关于直线y=x对称。第二类和(2)总结相同。(4)二重积分和三重积分都和(1)的解释类似,也是看积分域函数将x,y,z更换顺序后,相当于将坐标轴重新命名,积分区间没有发生变化,则被积函数作相应变换后,积分值不变。例计算,其中L是球面x2+y2+z2=R2与平面x+y+z=0的交线。Ldsx2解由对称性可知LLLdszdsydsx222LLdszyxdsx)(312222LLdsRdsR223131RR2312ex.计算其中为曲线解:利用轮换对称性,有szsysxddd222利用重心公式知szyxId)(32222334azoyx(的重心在原点)
本文标题:积分的轮换对称性
链接地址:https://www.777doc.com/doc-6956342 .html