您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2017年广西高考数学模拟试卷(理科)(解析版)
第1页(共24页)2017年广西高考数学模拟试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列集合中,是集合A={x|x2<5x}的真子集的是()A.{2,5}B.(6,+∞)C.(0,5)D.(1,5)2.复数的实部与虚部分别为()A.7,﹣3B.7,﹣3iC.﹣7,3D.﹣7,3i3.设a=log25,b=log26,,则()A.c>b>aB.b>a>cC.c>a>bD.a>b>c4.设向量=(1,2),=(﹣3,5),=(4,x),若+=λ(λ∈R),则λ+x的值是()A.﹣B.C.﹣D.5.已知tanα=3,则等于()A.B.C.D.26.设x,y满足约束条件,则的最大值为()A.B.2C.D.07.将函数y=cos(2x+)的图象向左平移个单位后,得到f(x)的图象,则()A.f(x)=﹣sin2xB.f(x)的图象关于x=﹣对称C.f()=D.f(x)的图象关于(,0)对称8.执行如图所示的程序框图,若输入的x=2,n=4,则输出的s等于()第2页(共24页)A.94B.99C.45D.2039.直线y=2b与双曲线﹣=1(a>0,b>0)的左支、右支分别交于B,C两点,A为右顶点,O为坐标原点,若∠AOC=∠BOC,则该双曲线的离心率为()A.B.C.D.10.2015年年岁史诗大剧《芈月传》风靡大江南北,影响力不亚于以前的《甄嬛传》.某记者调查了大量《芈月传》的观众,发现年龄段与爱看的比例存在较好的线性相关关系,年龄在[10,14],[15,19],[20,24],[25,29],[30,34]的爱看比例分别为10%,18%,20%,30%,t%.现用这5个年龄段的中间值x代表年龄段,如12代表[10,14],17代表[15,19],根据前四个数据求得x关于爱看比例y的线性回归方程为,由此可推测t的值为()A.33B.35C.37D.3911.某几何体是组合体,其三视图如图所示,则该几何体的体积为()第3页(共24页)A.+8πB.+8πC.16+8πD.+16π12.已知定义在R上的偶函数f(x)在[0,+∞)上递减,若不等式f(﹣ax+lnx+1)+f(ax﹣lnx﹣1)≥2f(1)对x∈[1,3]恒成立,则实数a的取值范围是()A.[2,e]B.[,+∞)C.[,e]D.[,]二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(x﹣1)7的展开式中x2的系数为.14.已知曲线C由抛物线y2=8x及其准线组成,则曲线C与圆(x+3)2+y2=16的交点的个数为.15.若体积为4的长方体的一个面的面积为1,且这个长方体8个顶点都在球O的球面上,则球O表面积的最小值为.16.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里有一个题目:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步,欲知为田几何.”这道题讲的是有一个三角形沙田,三边分别为13里,14里,15里,假设1里按500米计算,则该沙田的面积为平万千米.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.某体育场一角的看台共有20排座位,且此看台的座位是这样排列的:第一排由2个座位,从第二排起每一排都比前一排多1个座位,记an表示第n排的座位数.(1)确定此看台共有多少个座位;(2)设数列{2n•an}的前20项的和为S20,求log2S20﹣log220的值.18.已知某智能手机制作完成之后还需要依次通过三道严格的审核程序,第﹣道审核、第二道审核、第三道审核通过的概率分别为,每道程序是相互独立的,且一旦审核不通过就停止审核,每部手机只有三道程序都通过才能出厂销售.第4页(共24页)(1)求审核过程中只通过两道程序的概率;(2)现有3部智能手机进人审核,记这3部手机可以出厂销售的部数为X,求X的分布列及数学期望.19.如图,在三棱柱ABC﹣A1B1C1中,侧面ACC1A1与侧面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.(1)求证:AB1⊥CC1;(2)若AB1=3,A1C1的中点为D1,求二面角C﹣AB1﹣D1的余弦值.20.如图,F1,F2为椭圆C:+=1(a>b>0)的左、右焦点,D,E是椭圆的两个顶点,|F1F2|=2,|DE|=,若点M(x0,y0)在椭圆C上,则点N(,)称为点M的一个“椭点”.直线l与椭圆交于A,B两点,A,B两点的“椭点”分别为P,Q,已知以PQ为直径的圆经过坐标原点O.(1)求椭圆C的标准方程;(2)试探讨△AOB的面积S是否为定值?若为定值,求出该定值;若不为定值,请说明理由.21.已知函数f(x)=4x2+﹣a,g(x)=f(x)+b,其中a,b为常数.(1)若x=1是函数y=xf(x)的一个极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)有2个零点,f(g(x))有6个零点,求a+b的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选第5页(共24页)修4-4:坐标系与参数方程]22.在直角坐标系xOy中,圆C的方程为(x﹣)2+(y+1)2=9,以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线OP:θ=(p∈R)与圆C交于点M,N,求线段MN的长.[选修4-5:不等式选讲]23.已知f(x)=|x+2|﹣|2x﹣1|,M为不等式f(x)>0的解集.(1)求M;(2)求证:当x,y∈M时,|x+y+xy|<15.第6页(共24页)2017年广西高考数学模拟试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列集合中,是集合A={x|x2<5x}的真子集的是()A.{2,5}B.(6,+∞)C.(0,5)D.(1,5)【考点】子集与真子集.【分析】求解二次不等式化简A,然后可得集合A的真子集.【解答】解:因为A={x|x2<5x}={x|0<x<5},所以是集合A={x|x2<5x}的真子集的是(1,5).故选:D.2.复数的实部与虚部分别为()A.7,﹣3B.7,﹣3iC.﹣7,3D.﹣7,3i【考点】复数的基本概念.【分析】直接由复数代数形式的乘除运算化简复数z得答案.【解答】解:=,∴z的实部与虚部分别为7,﹣3.故选:A.3.设a=log25,b=log26,,则()A.c>b>aB.b>a>cC.c>a>bD.a>b>c【考点】对数值大小的比较.【分析】利用对数函数、指数函数的性质直接求解.【解答】解:∵log24=2<a=log25<b=log26<log28=3,=3,第7页(共24页)∴c>b>a.故选:A.4.设向量=(1,2),=(﹣3,5),=(4,x),若+=λ(λ∈R),则λ+x的值是()A.﹣B.C.﹣D.【考点】平面向量的坐标运算.【分析】根据平面向量的坐标运算与向量相等,列出方程组求出λ和x的值,即可求出λ+x的值.【解答】解:向量=(1,2),=(﹣3,5),=(4,x),∴+=(﹣2,7),又+=λ(λ∈R),∴,解得λ=﹣,x=﹣14;∴λ+x=﹣﹣14=﹣.故选:C.5.已知tanα=3,则等于()A.B.C.D.2【考点】同角三角函数基本关系的运用.【分析】由已知利用同角三角函数基本关系式化弦为切,即可计算得解.【解答】解:∵tanα=3,∴===.故选:B.6.设x,y满足约束条件,则的最大值为()第8页(共24页)A.B.2C.D.0【考点】简单线性规划.【分析】首先画出可行域,根据事情是区域内的点与原点连接的直线的斜率的最大值,求之即可.【解答】解:由已知得到可行域如图:则表示区域内的点与原点连接的直线的斜率,所以与C连接的直线斜率最大,且C(2,3),所以的最大值为;故选:A.7.将函数y=cos(2x+)的图象向左平移个单位后,得到f(x)的图象,则()A.f(x)=﹣sin2xB.f(x)的图象关于x=﹣对称C.f()=D.f(x)的图象关于(,0)对称【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用诱导公式、y=Asin(ωx+φ)的图象变换规律,正弦函数的图象和性质,得出结论.【解答】解:将函数y=cos(2x+)的图象向左平移个单位后,得到f(x)=cos[2(x+)+]=cos(2x+)=﹣sin(2x+)的图象,故排除A;第9页(共24页)当x=﹣时,f(x)=1,为最大值,故f(x)的图象关于x=﹣对称,故B正确;f()=﹣sin=﹣sin=﹣,故排除C;当x=时,f(x)=﹣sin=﹣≠0,故f(x)的图象不关于(,0)对称,故D错误,故选:B.8.执行如图所示的程序框图,若输入的x=2,n=4,则输出的s等于()A.94B.99C.45D.203【考点】程序框图.【分析】输入x和n的值,求出k的值,比较即可.【解答】解:第一次运算:s=2,s=5,k=2;第二次运算:s=5+2=7,s=16,k=3;第三次运算:s=16+3=19,s=41,k=4;第四次运算:s=41+4=45,s=94,k=5>4,输出s=94,故选:A.第10页(共24页)9.直线y=2b与双曲线﹣=1(a>0,b>0)的左支、右支分别交于B,C两点,A为右顶点,O为坐标原点,若∠AOC=∠BOC,则该双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】利用条件得出∠AOC=60°,C(b,2b),代入双曲线﹣=1,可得﹣4=1,b=a,即可得出结论.【解答】解:∵∠AOC=∠BOC,∴∠AOC=60°,∴C(b,2b),代入双曲线﹣=1,可得﹣4=1,∴b=a,∴c==a,∴e==,故选D.10.2015年年岁史诗大剧《芈月传》风靡大江南北,影响力不亚于以前的《甄嬛传》.某记者调查了大量《芈月传》的观众,发现年龄段与爱看的比例存在较好的线性相关关系,年龄在[10,14],[15,19],[20,24],[25,29],[30,34]的爱看比例分别为10%,18%,20%,30%,t%.现用这5个年龄段的中间值x代表年龄段,如12代表[10,14],17代表[15,19],根据前四个数据求得x关于爱看比例y的线性回归方程为,由此可推测t的值为()A.33B.35C.37D.39【考点】线性回归方程.【分析】计算前四组数据的平均数,代入线性回归方程求出k的值,再由回归直第11页(共24页)线方程求出x=32时的值即可.【解答】解:前四组数据的平均数为,=×(12+17+22+27)=19.5,=×(10+18+20+30)=19.5,代入线性回归方程=kx﹣4.68,得19.5=k×19.5﹣4.68,解得k=1.24,∴线性回归方程为=1.24x﹣4.68;当x=32时,=1.24×32﹣4.68≈35,由此可推测t的值为35.故选:B.11.某几何体是组合体,其三视图如图所示,则该几何体的体积为()A.+8πB.+8πC.16+8πD.+16π【考点】由三视图求面积、体积.【分析】由三视图知该几何体是下面为半圆柱体、上面为四棱锥,由三视图求出几何元素的长度、并判断出位置关系,由柱体、锥体的体积公式即可求出几何体的体积.【解答】解:根据三视图可知几何体是下面为半个圆柱、上面为一个四棱锥的组合体,且四棱锥的底面是俯视图中小矩形的两条边分别是2、4,第12页(共24页)其中一条侧棱与底面垂直,高为2,圆柱的底面圆半径为2、母线长为4,所以该几何体的体积为V=×2×4×2+×π×22×4=+8π.故选:A.12.已知定义在R上的偶函数f(x)在[0,+∞)上递减,若不等式f(﹣ax+lnx+1)+f(ax﹣lnx﹣1)≥2f(1)对x∈[1,3]恒成立,则实数a的取值范围是()A.[2,e]B.[,+∞)C.[,e]D.[,]【考点】奇偶性与单调性的综合.【分析】由
本文标题:2017年广西高考数学模拟试卷(理科)(解析版)
链接地址:https://www.777doc.com/doc-6992965 .html