您好,欢迎访问三七文档
当前位置:首页 > IT计算机/网络 > 电子商务 > 古典概型说课课件_获全国教师说课大赛一等奖
数学3(必修)第三章概率教材分析教法学法教学过程教学评价教学目标《古典概型》是高中数学人教A版必修3第三章概率3.2的内容,是在学习随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种最基本的数学模型,也是一种特殊的概率模型,与我们的生活息息相关。它的引入有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题,可以激发学生的学习兴趣。同时也是后面学习其他概率的基础,起到承前启后的作用,所以在概率论中占有相当重要的地位。教材分析一、教材的地位和作用教材分析教材主体知识结构:通过掷硬币和掷骰子实验类比归纳引出基本事件的概念(通过例1让学生感受求一些随机事件所含基本事件的一般方法)通过掷硬币、掷骰子实验和例1类比归纳引出古典概型的概念通过掷硬币、掷骰子实验总结归纳出古典概型的概率计算公式(通过两个生活实例让学生初步学会从实际问题中提炼出古典概型和计算一些随机事件的概率)本节教材学习古典概型,教学安排是2课时,本节是第一课时一、知识目标:二、能力目标三、情感目标教学目标1、理解古典概型及其概率计算公式;2、会用列举法计算一些随机事件所含的基本事件数及事件发生的概率1、通过模拟试验让学生理解古典概型的特征,观察类比各个试验,归纳总结古典概型的概率计算公式,体验由特殊到一般的化归思想;2、掌握列举法,学会运用分类讨论的思想解决概率的计算问题。1、通过各种有趣的、贴近学生生活的素材,激发学生学习数学的兴趣;2、培养学生用随机的观点来理性的理解世界,鼓励学生通过观察类比提高发现问题、分析问题、解决问题的能力;3、通过合作探究试验,使学生感受与他人合作的重要性和实事求是的科学态度。根据课程标准要求,确定本节课的教学目标为:重点:教学重难点二、教学的重难点和关键难点:1、理解古典概型的概念;2、利用古典概型概率公式求解随机事件的概率。1、判断一个随机试验是否为古典概型;2、古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。关键:1、重视知识概念的形成过程,引导学生通过实验观察、自主探究、类比归纳,把古典概型这一知识点的发现的全过程逐步展现给学生,让学生自己体会理解古典概型的特征和初步学会把一些实际问题化为古典概型;2、在解决概率的计算上,教师通过鼓励学生尝试列表和画出树状图等方法,让学生感受求基本事件个数的一般方法,从而化解由于没有学习排列组合而学习概率这一教学困惑,也符合培养学生的数学应用意识的新课程理念。教学学法学生情况分析情感分析:部分学生依赖性较强,对数学学习兴趣不够,积极参与研究、合作交流意识方面有待加强,个别学生对学习数学有畏难情绪。认知分析:学生已经了解了概率的意义,掌握了概率的基本性质,知道了互斥事件和对立事件的概率加法公式能力分析:学生基础相对比较薄弱,基础知识、基本技能不扎实,知识点漏洞较大。知识迁移能力、知识运用实践能力、独立思考的意识与能力、分析运算、解决问题能力欠缺,教学学法在教学中以问题为核心,采取引导发现法,通过“提出问题思考问题解决问题”的教学过程,借助实物试验、多媒体课件引导学生进行试验探究、观察类比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。学生学法学生通过“试验观察思考探究归纳总结”的自主学习解惑过程,体验了从特殊到一般的数学思维过程,体会学以致用和数学的严谨之美,增强学习的兴趣和信心。教学方法教学过程一、提出问题情景引入二、类比归纳、引出概念三、归纳总结、探究公式四、例题分析、加深理解五、练习反馈、强化目标六、总结概括、提炼精华1、课前布置任务:以数学小组(6人一组)为单位,完成下面两个模拟试验①掷一枚质地均匀的硬币的试验(至少投掷20次)②掷一枚质地均匀的骰子的试验(至少投掷60次)教学过程一、提出问题情景引入2、回答下列问题:①这两个试验出现的结果分别有几个?②结果之间都有什么特点?出现的频率是多少?估算出现的概率是多少?③用模拟试验的方法来求某一随机事件的概率的利与弊设计意图:1、通过掷硬币与掷骰子两个接近于生活的试验的设计,激发学生的学习兴趣;2、引导学生试验探究和观察类比,找出共性,总结归纳出基本事件的特点,为引出古典概型的定义做铺垫;3、鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力课前模拟实验:教学活动:老师布置学生分组实验,并提出3个问题;学生实验并回答问题,科代表统计汇总结果和问题答案教学过程一、提出问题、情景引入1点2点3点4点5点6点反面向上正面向上“1点”、“2点”、“3点”、“4点”、“5点”、“6点”“正面朝上”“反面朝上”试验结果六种随机事件的可能性相等,即它们的概率都是骰子质地是均匀的试验二两种随机事件的可能性相等,即它们的概率都是硬币质地是均匀的试验一结果关系试验材料1216掷硬币实验掷骰子试验设计意图:引导学生用表格展示实验结果,整洁直观,便于寻找共性教学活动:新课开始由科代表展示汇总的实验结果4、基本事件的概念:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。基本事件有如下的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。教学过程练习:①掷骰子试验中,“出现偶数点”由哪些基本事件组成?(2点、4点、6点)②掷骰子试验中,“出现点数不大于3”由哪些基本事件组成?(1点、2点、3点)问题:1、掷硬币实验结果”正面“、”反面“会同时出现吗?掷骰子试验结果”1点“、”2点“、……”6点“会同时出现吗?2、掷骰子试验中,随机试验“出现奇数点”包含哪些结果?二、类比归纳、引出概念教学活动:老师根据实验结果提出2个问题,学生讨论回答问题;师生共同归纳基本时事件的概念;再通过两个练习加深对概念的理解。设计意图:1、通过对试验结果分析提问,引导学生自己总结概括基本事件的特点;2、通过练习进一步加深对基本事件这一概念的理解;二、类比归纳、引出概念教学过程例1从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?abcdbcdcd{,}Aab{,}Bac{,}Cad{,}Dbc{,}Ebd{,}Fcd解:所求的基本事件共有6个:说明:①列举基本事件要做到不重不漏,应当按照一定的规律列出全部的基本事件.②一般用列举法列出所有基本事件的结果,方法包括树状图、列表法,按规律列举等树状图教学活动:由学生写出答案,再小组讨论得出正确答案,最后师生总结方法和注意事项设计意图:1、通过举例,进一步加深对基本事件的理解,为学习古典概型的定义做铺垫。2、因学生没有学习排列组合,因此要用列举法(包括树状图、列表法,按规律列举等)求出基本事件总数,将数形结合和分类讨论思想渗透到具体问题中来,不仅让学生直观地感受基本事件总数,而且还能使学生在列举时不重不漏,解决了本节课的教学难点。基本事件有有限个每个基本事件出现的可能性相等“A”、“B”、“C”“D”、“E”、“F”例题1“1点”、“2点”、“3点”、“4点”、“5点”、“6点”试验二“正面朝上”“反面朝上”试验一相同不同2个6个6个概括总结得到:(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等。(等可能性)我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。教学过程二、类比归纳、引出概念思考:(1)向一圆面内随机投一个点,若该点落在圆内任意一点都是等可能的,是古典模型吗?为什么?(2)射击运动员向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环、……命中1环和命中0环(即不命中),你认为这是古典概率模型吗?为什么?教学活动:由学生观察对比,找出两个模拟试验和例1的共同特点,师生总结得出古典概型的概念,再通过两个思考强调设计意图:设疑“观察类比模拟试验与例1中基本事件有什么共同点?”,通过问题的决让学生体验由特殊到一般的数学思想方法的应用,从而引出古典概型的概念,并设计两个思考题,加深对古典概型的两个特征的理解。教学过程三、归纳总结、探究公式思考:在古典概型下,基本事件出现概率是多少?随机事件出现的概率如何计算?12“出现正面朝上”所包含的基本事件的个数(“出现正面朝上”)==基本事件的总数P讨论!出现正面朝上的概率与反面朝上的概率相等,即P(“正面朝上”)=P(“反面朝上”)由概率的加法公式,得P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1因此P(“正面朝上”)=P(“反面朝上”)=12问题1、掷硬币实验中,随机事件“出现正面向上”的概率是多少?教学活动:老师提出问题,学生带着问题去计算,并小组讨论由特殊情况归纳一般结论设计意图:了解古典概型的概念之后,就要引领学生探究概率公式。为了突破这个重点,我设计了让学生带着思考问题观察试验和讨论,使其有目的的去寻找答案,有效的利用课堂时间,达到教学目标。36P“出现偶数点”所包含的基本事件的个数(“出现偶数点”)==基本事件的总数教学过程三、归纳总结、探究公式16实验中,出现各点概率相等,即P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)反复利用概率的加法公式,我们有P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1所以P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)=++==即1616163612问题2、掷骰子试验中,随机事件“出现偶数点”的概率是多少?教学过程四、例题分析、加深理解例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考察的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?教学活动:引导学生讨论这个问题什么情况下可以看成古典概型,即数学建模过程。解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考生随机地选择一个答案是选择A,B,C,D的可能性是相等的。从而由古典概型的概率计算公式得:10.254P“答对”所包含的基本事件的个数(“答对”)===基本事件的总数设计意图:1、进一步加深对古典概型的概念理解,强调应用概率公式首先要判断是否为古典概型;初步教会学生把一些实际问题转化为古典概率模型;2、通过对与学生密切相关的问题的解决和对概率公式的直接应用,让学生真正理解并掌握概率公式思考:假设有20道单选题,如果有一个考生答对了17道题,他是随机选择可能性大,还是他掌握了一定知识的可能性大?例2思考探究探究:在标准化考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?教学过程四、例题分析、加深理解作业教学活动:学生分组讨论思考和探究问题,思考题师生课堂运用前面所学概率极大似然思想解释,探究题引导学生用分类讨论方法列举,具体过程在作业中完成设计意图:通过对例2的变式思考与探究,进一步突破本节课的重点和难点,加深对概率公式的理解,渗透了分类讨论的思想方法和排除法解选择题,了解实际生活中处理一些问题可用所学知识作为依据,体验概率与生活是息息相关的,培养学生解决实际问题的能力。例3同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?教学过程四、例题分析、加深理解解:(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的结果都可以与2号骰子的任意一个结果配对,我们用一个“有序实数对”来表示组成同时掷两个骰子的一个结
本文标题:古典概型说课课件_获全国教师说课大赛一等奖
链接地址:https://www.777doc.com/doc-6995678 .html