您好,欢迎访问三七文档
退火(denaturation/annealing)两条寡核苷酸引物在适当温度下,分别依据碱基互补结合在模板DNA扩增区域两端,称为退火。此时,DNA聚合酶便开始合成新链。由于加入的引物分子数远远大于模板DNA分子数,因此引物与模板DNA形成复合物的几率远远大于DNA分子自身的复性配对表达载体(expressingvector)是用来在受体细胞中表达(转录和翻译)外源基因的载体。除了具备复制起始点、筛选标志和多克隆位点外,还需要带有在真核细胞中表达所必需的DNA构件,如启动子、终止子、阻遏蛋白结合位点,核糖体结合位点多克隆位点(multiplecloningsite)载体上含有一个人工合成的DNA片段,其上含有多个单一酶切位点,是外源DNA插入部位,具备条件是:载体中的一段碱基序列,由数个酶切位点组成,这些酶切位点在载体上都是单一位点。非融合蛋白:利用DNA重组技术,将一段外源基因导入细菌中,不与细菌中表达的任何蛋白或多肽融合在一起的外源蛋白产物,其优点在于它具有非常近似于真核生物体内蛋白质的结构,因此其表达产物的生物学功能也非常接近于生物体内天然蛋白质目的基因:在基因工程的设计和操作中,被用于基因重组、改变受体细胞形状和获得预期表达产物的基因。也就是说要研究或应用的基因,或克隆、表达的基因。一般选择的目的基因均为结构基因,也就是能够转录和翻译出多肽或蛋白质的基因。基因组学(genomics)是阐明整个基因组结构、结构与功能关系以及基因之间相互作用的科学,根据研究目的不同可分为3个不同的亚领域,结构基因组学(主要任务是通过人类基因组作图,揭示人类基因组的全部DNA序列及其组成)、比较基因组学(主要任务是比较模式生物基因组之间或模式生物与人类基因组之间比较与鉴定,为预测新基因的功能和研究生物进化提供依据)、功能基因组学(则是利用结构基因组所提供的信息,分析和鉴定基因组中所有基因的功能,包括编码和非编码序列单核苷酸多态性(SNP)是指在基因组水平上由单个核苷酸的变异所引起的DNA序列多态性。在人群中SNP的发生频率至少大于1%,SNP是人类可遗传的变异中最常见的一种,也是基因组中最为稳定的变异。SNP最大程度地代表了不同个体之间的遗传差异,因而可作为药物遗传学、多基因疾病和生物进化重要的遗传标记。根据生物学影响,可分为错义突变、同义突变和无义突变。假基因(pseudogene)指与某些有功能的基因结构相似,但不能表达产物的基因。假基因的产生是由于功能基因发生突变或cDNA插入所致。由突变而引起的功能缺失通常是在编码区引入了终止密码子,这种假基因称为重复假基因或传统假基因。由插入mRNA反转录生成的cDNA而造成的假基因称为加工假基因或返座假基因。杂合子丢失(lossofheterozygosityLOH)指从亲代遗传而来的受精卵开始就带有某等位基因突变的杂合子个体再次发生遗传损伤,导致野生型显性基因突变或缺失形成突变纯合子,失去原有的杂合状态。癌基因(oncogene):指细胞内控制细胞生长和分化的基因,它的结构异常或表达异常,可以引起细胞癌变,广泛存在与单细胞生物到人类在内的基因组中,在进化上高度保守,表达产物对细胞的生长、增值发挥着精密的正性调控作用,该类基因的异常活化往往具有促进细胞恶性转化,诱导肿瘤发生的作用,因此被称为癌基因。基因诊断(genediagnosis):是利用现代分子生物学技术从DNA/RNA的水平进行检测,分析体内致病基因的存在、变异和表达等状态,从而对疾病作出诊断的过程。优点是:针对性强;有很高的特异性;灵敏度高,有信号放大作用;实用性强,应用范围广。基因治疗(genetherapy):是以基因转移为基础,将某种遗传物质导入病人细胞内,使其在体内表达并发挥作用,从而达到治疗疾病目的的一种方法。通过基因治疗不仅可以将外源正常基因导入病变细胞中,产生正常基因表达产物以补充缺失的或失去正常功能的蛋白质;而且可以采用适当的技术抑制细胞内过度表达的基因,达到治疗疾病的目的;还可以将特定的基因导入非病变的细胞,在体内表达特定产物,达到治疗疾病的目的,也可以向功能或生物学特性异常的细胞中导入细胞本不表达的基因,利用其表达产物达到治疗疾病的目的。生物信息学(bioinformation):是一门新的前沿交叉学科,采用数理和信息科学的理论、技术和方法研究生命现象,理解和组织与生物分子相关的信息。目前的研究重点和关键突破主要是在基因组学和蛋白组学,是人们从核酸和蛋白质的序列数据开始,经一系列分析手段归纳和预测其中所蕴藏的关于结构和功能的信息。表观遗传学(epigenetics):是指在DNA序列不发生改变的情况下,基因的表达水平与功能发生改变,并产生可遗传的表型。其特征可概括为DNA序列不变,可遗传。具有可逆性。在分子角度也可定义为“在同一基因组上建立并将不同基因表达(转录)模式和基因沉默传递下去的染色质模板变化的总和”染色质重塑(chromatinremodeling):染色质和单个核小体内发生的任何可检测到的变化称为染色质重塑。重塑的染色质表现为对核酸酶高度敏感以及组蛋白结构和位置改变等特点。目前已知有两类复合体调节染色质重塑,即ATP依赖的染色质重塑复合体和染色质共价修饰复合体。CpG岛:CpG指“CG核苷酸对”,其中G在DNA链中紧随C后.在脊椎动物中CpG二核苷酸是最重要的甲基化位点,它在人类基因组中呈不均匀分布,但在某些区段,CpG常成簇存在,人们将这段富含CpG的DNA称为CpG岛,通常位于转录调控区域附近,在基因组中,约有60%以上基因的启动子含有CpG岛,它的甲基化与基因的转录调控密切相关。RNAi(RNA干扰):是指在生物体细胞内,由双链RNA(dsRNA)诱发的,有特定酶参与的同源mRNA高效特异性降解(特异性基因沉默)的现象,它在转录水平、转录后水平、翻译水平抑制相应基因的表达。反式作用因子(trans-actingfactor):又称转录因子,指存在于真核细胞内,能识别并结合特定的DNA序列,是基因开放和关闭的一组序列特异性的DNA结合蛋白。一般具有三个功能结构域:DNA识别结构域,转录激活结构域,蛋白质-蛋白质结构域,能够与顺式作用元件特异性结合,结合后通过促进或抑制转录起始复合物形成过程中的各部反应,以激活或阻遏下游基因的表达。组蛋白密码:组蛋白在翻译后的修饰中会发生改变,从而提供一种识别信号,为其他蛋白与DNA的结合产生协同或拮抗效应,是一种动态转录控制部分。转录组学(transcriptomics):转录组是是指生命单元所转录出来的全部转录子,包括rRNA,mRNA,tRNA和其他非编码RNA,转录组学是在整体水平上研究细胞编码基因(RNA和蛋白质)转录情况及转录调控规律的科学,与基因组相比,转录组最大的特点是受内外多种因素的调节,因而是动态可变的。基因:是遗传的物质基础,是DNA分子上具有遗传信息的特定核苷酸序列的总称,携带有遗传信息的DNA序列,是具有遗传效应的DNA分子片段,是控制性状的基本遗传单位,通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。基因组genome:在生物学中,一个生物体的基因组是指包含在该生物的DNA(部分病毒是RNA)中的全部遗传信息,又称基因体,基因组包括基因和非编码DNA,更精确的讲,一个生物体的基因组是一套染色体中的完整的DNA序列。基因超家族genesuperfamily:是指DNA序列有一定的相似性,但功能不一定相同的若干个多基因家族的集合,可能从同一祖先基因进化而来基因家族genefamily:真核细胞中许多相关的基因按功能成套组合,称为基因家族,特点是具有显著相似性的一组基因,编码相似的蛋白质产物,同一家族中的成员有时紧密的排列在一起,成为一个基因簇,更多的时候,他们却分散在同一染色体不同部位,甚至位于不同染色体上,具有各自不同的表达调控模式基因多态性genepolymorphism:是指在一个生物群体中,同时和经常存在两种或多种不连续的变异型或基因型或等位基因,亦称遗传多态性。从本质上来讲,多态性的产生在于基因水平上的变异,一般发生在基因序列中不编码蛋白的区域和没有重要调节功能的区域。包括限制性片段长度多态性、可变数目串联重复序列,单核苷酸多态性质粒:质粒为环行闭合的双链DNA,存在于细胞质中,质粒编码非细菌生命所必需的某些生物学性状,质粒具有可自主复制,传给子代,也可丢失,以及在细菌之间转移等特性,与细菌的遗传变异有关顺式作用元件cis-actingelement:位于基因的旁侧,可以调控影响基因表达的核酸序列,包括启动子,增强子,应答元件等,其活性只影响与其自身同处于一个DNA分子上的基因,本身并不编码蛋白质,可以与反式作用因子相互作用参与基因表达调控。操纵子Operator:指启动基因、操纵基因和一系列紧密连锁的结构基因的总称,是转录的功能单位,很多功能上相关联的结构基因串联在一起,构成信息区,连同其上游的调控区包括启动子和操纵区,以及下游的转录终止信号所构成的基因表达单位,主要见于原核生物的转录调控,所转录的RNA为多顺反子,如乳糖操纵子,阿拉伯糖操纵子,组氨酸操纵子等分子杂交molecularhybridization是确定单链核酸碱基序列的技术,其基本原理是待测单链核酸与已知序列的单链核酸(探针)间通过碱基配对形成可检出的双螺旋片段,这种技术可在DNA与RNA,RNA与RNA,或DNA与DNA之间进行,形成不同类型的杂交分子miRNA:微小RNA,是在真核生物中发现的一类内源性的具有调控功能的非编码RNA,其大小长约20到25个核苷酸。成熟的miRNA是由较长的初级转录物经过一系列核酸酶的剪切加工而产生的,随后组装进RNA诱导的沉默复合体,通过碱基互补配对的方式识别靶mRNA,并根据互补程度的不同指导沉默复合体降解靶mRNA或者阻遏靶mRNA的翻译反义RNA:是指mRNA互补的RNA分子,这种反义RNA能与mRNA分子特异性地互补结合,从而抑制该mRNA的加工与翻译,是原核细胞中基因表达调控的一种方式。限制性核酸内切酶RE:restrictionendonuclease能够识别和切割双链DNA内部特定核苷酸序列的一类核酸酶,简称内切酶,根据识别位点序列特性分为IIIIII型,其中I型和III型内切酶识别位点不一,II型酶则一般识别4~6个具有回文结构的核苷酸序列且具有位点识别特异性。PCR:聚合酶链式反应是一种体外酶促扩增特异DNA片段的技术,在反应中,DNA产物的生成以指数方式增加,能将极微量的DNA成百万倍地扩增,最主要的特点是灵敏度高,特异性强,操作简便。(在DNA聚合酶催化下,以亲代DNA为模板,以特定引物为延伸起点,通过变性,退火,延伸三步骤循环,在体外复制出与模板DNA序列互补的子链DNA的过程,能快速特异地在体外扩增任何目的的DNA片段)试述PCR技术的基本原理、过程和引物设计原理。㈠原理:在体外模拟体内DNA复制的过程,以拟扩增的DNA分子为模板;用2个寡核苷酸片段作为引物,分别在拟扩增片段的DNA两侧与模板DNA链互补结合,提供3’-OH末端;在DNA聚合酶的作用下,按照半保留复制的机制沿着模板链延伸直至完成新的DNA合成,不断重复这一过程,即可使目的DNA片段得到扩增。PCR反应的特异性依赖于与靶序列两端互补的寡核苷酸引物。㈡过程:变性:PCR反应开始时,首先要使双链DNA模板链解链形成单链,称为变性。退火:两条寡核苷酸引物在适当温度下,分别依据碱基互补结合在模板DNA扩增区域两端,称为退火。延伸:在4种dNTP底物和Mg2+存在下,DNA聚合酶在最适作用温度下将单核苷酸按碱基互补配对原则从引物3’-端掺入,使引物延5’-3’方向延伸合成新股DNA,每一循环的产物再继续作为下一循环的模板,以上三步为一个循环,如此循环30次左右。㈢引物设计原则:引物设计的总原则是提高扩增的效率和特异性。1.引物的位置:若用于基因组DNA的引物序列应位于基因组DNA保守区,且与非扩增区无同源
本文标题:分子生物学总结资料
链接地址:https://www.777doc.com/doc-7093809 .html