您好,欢迎访问三七文档
《基于DS18B20传感器温度测量》摘要:本文介绍了基于单片机STC89C52的温度测量系统的设计方案与硬件实现,采用温度传感器DS18B20采集温度数据,数码管显示温度数据。引言:随着社会的发展,温度的测量及控制越来越重要。本文采用单片机STC89C52设计了温度实时测量系统。单片机能够根据温度传感器DS18B20所采集的温度数据来控制其他操作。从而把温度控制在设定的范围内。所有的温度数据通过数码管显示。此方法能对温度进行精确有效的控制。通过对单片机进行编程能减少电路的复杂性进行更多的控制。正文一:方案选择与论证根据设计的总体要求,本系统可以划分为以下几个基本模块,针对各个模块的功能要求,分别有以下一些不同的设计方案:1、温度传感器模块方案一:采用热敏电阻,热敏电阻精度、重复性、可靠性较差,对于检测1摄氏度的信号是不适用的,也不能满足测量范围。在温度测量系统中,也常采用单片温度传感器,比如AD590,LM35等。但这些芯片输出的都是模拟信号,必须经过A/D转换后才能送给计算机,这样就使测温系统的硬件结构较复杂。另外,这种测温系统难以实现多点测温,也要用到复杂的算法,一定程度上也增加了软件实现的难度。方案二:采用单总线数字温度传感器DS18B20测量温度,直接输出数字信号。便于单片机处理及控制,节省硬件电路。且该芯片的物理化学性很稳定,此元件线形性能好,在0—100摄氏度时,最大线形偏差小于1摄氏度。DS18B20的最大特点之一采用了单总线的数据传输,由数字温度计DS18B20和微控制器AT89C51构成的温度装置,它直接输出温度的数字信号到微控制器。每只DS18B20具有一个独有的不可修改的64位序列号,根据序列号可访问不同的器件。这样一条总线上可挂接多个DS18B20传感器,实现多点温度测量,轻松的组建传感网络。综上分析,我们选用第二种方案。2、显示模块方案一:采用8位段数码管,将单片机得到的数据通过数码管显示出来。该方案简单易行,程序设计简单。方案二:采用液晶显示器件,液晶显示平稳、省电、美观,更容易实现题目要求,对后续的园艺通兼容性高,但其对程序的设计要求较高,对于编程不太熟悉的我们,难度较大。综上分析,结合自身实际情况,我们采用了第一种方案。3、微控制器模块温度传感器有四种主要类型:热点偶、热敏电阻、电阻温度检测器、IC温度传感器。其中IC温度传感器又包括模拟输出和数字输出两种类型。热电偶应用很广泛,因为它们非常坚固而且不太贵。热电偶有多种类型,它们覆盖非常宽的温度范围,从-200℃到2000℃。它们的特点是:低灵敏度、低稳定性、中等精度、响应速度慢、高温下容易老化和有漂移,以及非线性。另外,热电偶需要外部参考端。电阻温度检测器精度极高且具有中等线性度。它们特别稳定,并有许多种配置。但它们的最高工作温度只能达到400℃左右。它们也有很大的TC,且价格昂贵(是热电偶的4~10倍),并且需要一个外部参考源。模拟输出IC温度传感器具有很高的线性度(如果配合一个模数转换器或ADC可产生数字输出)、低成本、高精度(大约1%)、小尺寸和高分辨率。它们的不足之处在于温度范围有限(-55℃~+150℃),并且需要一个外部参考源。数字输出IC温度传感器带有一个内置参考源,它们的响应速度也相当慢(100ms数量级)。虽然它们固有地会自身发热,但可以采用自动关闭和单次转换模式使其在需要测量之前将IC设置为低功耗状态,从而将自身发热降到最低。综上方案的比较,数字输出IC温度传感器与热敏电阻、RTD和热电偶传感器相比,具有很高的线性,而且由于技术比较成熟,集成复杂的功能,成本也较低,能够提供一个数字输出,省去A/D转化器的使用,有效较低了系统成本,提高系统稳定性,并能够在一个相当有用的范围内进行温度测量。本实验采用DS18B20作为温度传感器。二、系统的具体设计与实现1、系统的总体设计方案采用AT89S52单片机作为控制核心对温度传感器DS18B20控制,读取温度信号并进行计算处理,并送到8位段数码管显示按照系统设计功能的要求,确定系统由3个模块组成:主控制器、测温电路和显示电路。数字温度计总体电路结构框图如图1所示。图1系统设计总体框图温度采集模块单片机处理模块温度显示模块2、硬件电路设计2.1单片机处理模块处理模块是整个设计方案的核心,它控制了温度的采集、处理与显示、温度上下限值的设定。本文采用STC89C52RC作为处理模块。这是STC公司推出的8051系列微处理器。它的特点是价格低、功耗低、高可靠、无法解密,内部Flash擦写次数为100,000次以上。图2是该芯片的引脚图。图3为STC89C52单片机的最小系统图2STC89C52引脚图图32.2温度采集模块DS18B20相关资料1、DS18B20原理与分析DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,它能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75ms和750ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而使用DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。以下是DS18B20的特点:(1)独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。(2)在使用中不需要任何外围元件。(3)可用数据线供电,电压范围:+3.0~+5.5V。(4)测温范围:-55-+125℃。固有测温分辨率为0.5℃。(5)通过编程可实现9-12位的数字读数方式。(6)用户可自设定非易失性的报警上下限值。(7)支持多点组网功能,多个DS18B20可以并联在惟一的三线上,实现多点测温。(8)负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。2、DS18B20的测温原理图4DS18B20的测温原理DS18B20的测温原理如图4所示,图中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在-55℃所对应的一个基数值。减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作必须按协议进行。操作协议为:初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。DS18B20工作过程及时序DS18B20内部的低温度系数振荡器是一个振荡频率随温度变化很小的振荡器,为计数器1提供一频率稳定的计数脉冲。高温度系数振荡器是一个振荡频率对温度很敏感的振荡器,为计数器2提供一个频率随温度变化的计数脉冲。初始时,温度寄存器被预置成-55℃,每当计数器1从预置数开始减计数到0时,温度寄存器中寄存的温度值就增加1℃,这个过程重复进行,直到计数器2计数到0时便停止。初始时,计数器1预置的是与-55℃相对应的一个预置值。以后计数器1每一个循环的预置数都由斜率累加器提供。为了补偿振荡器温度特性的非线性性,斜率累加器提供的预置数也随温度相应变化。计数器1的预置数也就是在给定温度处使温度寄存器寄存值增加1℃计数器所需要的计数个数。DS18B20内部的比较器以四舍五入的量化方式确定温度寄存器的最低有效位。在计数器2停止计数后,比较器将计数器1中的计数剩余值转换为温度值后与0.25℃进行比较,若低于0.25℃,温度寄存器的最低位就置0;若高于0.25℃,最低位就置1;若高于0.75℃时,温度寄存器的最低位就进位然后置0。这样,经过比较后所得的温度寄存器的值就是最终读取的温度值了,其最后位代表0.5℃,四舍五入最大量化误差为±1/2LSB,即0.25℃。温度寄存器中的温度值以9位数据格式表示,最高位为符号位,其余8位以二进制补码形式表示温度值。测温结束时,这9位数据转存到暂存存储器的前两个字节中,符号位占用第一字节,8位温度数据占据第二字节。DS18B20测量温度时使用特有的温度测量技术。DS18B20内部的低温度系数振荡器能产生稳定的频率信号;同样的,高温度系数振荡器则将被测温度转换成频率信号。当计数门打开时,DS18B20进行计数,计数门开通时间由高温度系数振荡器决定。芯片内部还有斜率累加器,可对频率的非线性度加以补偿。测量结果存入温度寄存器中。一般情况下的温度值应该为9位,但因符号位扩展成高8位,所以最后以16位补码形式读出。DS18B20工作过程一般遵循以下协议:初始化——ROM操作命令——存储器操作命令——处理数据①初始化单总线上的所有处理均从初始化序列开始。初始化序列包括总线主机发出一复位脉冲,接着由从属器件送出存在脉冲。存在脉冲让总线控制器知道DS1820在总线上且已准备好操作。②ROM操作命令一旦总线主机检测到从属器件的存在,它便可以发出器件ROM操作命令之一。所有ROM操作命令均为8位长。这些命令列表如下:ReadROM(读ROM)[33h]此命令允许总线主机读DS18B20的8位产品系列编码,唯一的48位序列号,以及8位的CRC。此命令只能在总线上仅有一个DS18B20的情况下可以使用。如果总线上存在多于一个的从属器件,那么当所有从片企图同时发送时将发生数据冲突的现象(漏极开路会产生线与的结果)。MatchROM(符合ROM)[55h]此命令后继以64位的ROM数据序列,允许总线主机对多点总线上特定的DS18B20寻址。只有与64位ROM序列严格相符的DS18B20才能对后继的存贮器操作命令作出响应。所有与64位ROM序列不符的从片将等待复位脉冲。此命令在总线上有单个或多个器件的情况下均可使用。SkipROM(跳过ROM)[CCh]在单点总线系统中,此命令通过允许总线主机不提供64位ROM编码而访问存储器操作来节省时间。如果在总线上存在多于一个的从属器件而且在SkipROM命令之后发出读命令,那么由于多个从片同时发送数据,会在总线上发生数据冲突(漏极开路下拉会产生线与的效果)。SearchROM(搜索ROM)[F0h]当系统开始工作时,总线主机可能不知道单线总线上的器件个数或者不知道其64位ROM编码。搜索ROM命令允许总线控制器用排除法识别总线上的所有从机的64位编码。AlarmSearch(告警搜索)[ECh]此命令的流程与搜索ROM命令相同。但是,仅在最近一次温度测量出现告警的情况下,DS18B20才对此命令作出响应。告警的条件定义为温度高于TH或低于TL。只要DS18B20一上电,告警条件就保持在设置状态,直到另一次温度测量显示出非告警值或者改变TH或TL的设置,使得测量值再一次位于允许的范围之内。贮存在EEPROM内的触发器值用于告警。③存储器操作命令WriteScratchpad(写暂存存储器)[4E
本文标题:温度传感器设计
链接地址:https://www.777doc.com/doc-7098281 .html