您好,欢迎访问三七文档
电泳技术带电颗粒在电场作用下向着与其电性相反的电极移动,称为电泳(electrophoresis,简称EP)。1937年瑞典科学家Tiselius建立了“移界电泳法(movingboundaryEP)”,成功地将血清蛋白质分成清蛋白、α1、α2、β和γ球蛋白5个主要成分,由于他的突出贡献,1948年荣获诺贝尔奖金。50年代,许多科学家着手改进电泳仪,寻找合适的电泳支持介质,先后找到滤纸、醋酸纤维素薄膜、淀粉及琼脂作为支持物。60年代,Davis等科学家利用聚丙烯酰胺凝胶作为电泳支持物,在此基础上发展了SDS-聚丙烯酰胺凝胶电泳、等电聚焦电泳、双向电泳和印迹转移电泳等技术。这些技术具有设备简单,操作方便,分辨率高等优点。目前,电泳技术已成为生物化学与分子生物学以及与其密切相关的医学、农、林、牧、鱼、制药、某些工业分析中必不可少的手段。第一节基本原理一、泳动度带电颗粒在电场中泳动的速度称迁移率或泳动度(mobility),可用下式表示:U=v/E=(d/l)/(V/l)=dl/Vt式中,U(也可以用m表示)为泳动度(cm2/V穝);v为颗粒泳动速度(cm/s);E为电场强度(V/cm);l为支持物的有效长度(cm);V为实际电压(V);t为通电时间(s或min)。电泳后通过侧量V,t,d,l,即可计算出被分离物质的泳动度。泳动度与带电颗粒所带净电荷的数量,颗粒大小和形状有关。一般说,净电荷数量愈多,颗粒愈小,愈接近球形,泳动度愈大。被分离的球形分子在电场中所受的力(F)为:F=EQ式中,E为电场强度,即每厘米支持物的电位降,Q为被分离物所带净电荷。根据Stoke定律,一球形分子在液体中泳动所受的阻力(摩擦力)F′为:F′=6πrηv式中,η为介质粘度,r为分子半径,v当平衡时:F=F′,即EQ=6πrηv∴v=EQ/6πrη∵U=v/E∴U=Q/6πrη由上式可见泳动度与球形分子半径、介质粘度、颗粒所带电荷有关。二、影响泳动度的因素1.电场强度电场强度是指每厘米的电位降,也称电位梯度(电势梯度)。电场强度越高,则带电颗粒泳动(1)常压(100-500V)电泳。其电场强度为2-10V/cm。分离时间较长,从数小时到数十小时(2)高压(2000-10000V)电泳。其电场强度为50-200V/cm,电泳时间很短,有时只需几分钟。多用于分离氨基酸、多肽、核苷酸、糖类等小分子2.溶液pH为使电泳时pH值恒定,必须采用缓冲液作为电极液,溶液的pH值决定带电颗粒的解离程度,亦即决定其所带电荷的多少。对蛋白质而言,溶液pH值离等电点(pI)越远,则颗粒所带的净电荷越多,泳动速度也越快;反之,则越慢。因此分离某种蛋白质混合液时,应选择一个合适的pH使欲分3.溶液的离子强度缓冲液离子强度越高,则颗粒的电动电势越小,泳动度也越小。一般最适合的离子强度在0.02-0.2之间。溶液离子强度(ionicstrength)I=1/2Σcz2式中,I为离子强度,c为离子的摩尔浓度(mol/L),z为离子价数,价如:求0.015mol/LNa2SO4Na2SO42Na++SO42-I=1/2(0.015×2×12+0.015×22)=0.0454.电渗电泳缓冲液相对于固体支持物的移动称电渗。如纸电泳时,滤纸吸附OH-离子带负电荷,与纸接触的缓冲液带正电荷向负极移动,会对颗粒的移动造成不良影响,故电泳时,电渗小些为好。5.电泳时会产生焦耳热,使介质粘度下降,分子运动加快,迁移率增加,同时温度过高会使样品中的生物大分子变性失活,因此电泳时,6.支持物现代的电泳多在固体支持物上进行,使样品中的不同组分形成不同的区带,称区带电泳。电泳结束后,支持物可以很方便地进行染色等后续处理,因此,使用很广泛。对支持物的一般要求是均匀,吸附力和电渗小,机械性能好,便于染色或紫外光下检测,故最好透明,无紫外吸收。常用的支持物有滤纸,醋酸纤维素薄膜,淀粉凝胶,聚近年兴起的毛细管电泳可不用支持物,并可与检测装置连接使用。此外,借助两性电解质的等电聚焦,电泳与免疫技术结合的免疫电泳,也是电泳的常用技术。第二节醋酸纤维素薄膜电泳醋酸纤维是纤维素的醋酸酯,由纤维素的羟基经乙酰化而成。将之溶于丙酮等有机溶剂中,即可涂布成均一细密的微孔薄膜,厚度约以0.1-0.15mm为宜。太厚吸水性差,分离效果不好;太薄则膜片缺少应有的机械强度而易碎。目前,国内有醋酸纤维薄膜商品出售,不同厂家生产的薄膜主要在乙酰化、厚度、孔径、网状结构等方面有所不同,但分离效果基本一致。(1)分离效果好。对蛋白质样品吸附极少,无“拖尾”现象,染色后背景能完全脱色,各种蛋白质染色带分离清晰,因而提高了定量测定的精确性。(2)快速省时。由于亲水性较滤纸小,电渗作用小,电泳时大部分电流是由样品传导的,所以分离速度快,电泳时间短,一般电泳45-60min即可,加上染色、脱色,整个电泳完成仅需90min(3)灵敏度高,样品用量少。血清蛋白电泳仅需2μL血清,故常用于检测在病理情况下微量(4)应用面广。某些蛋白在纸上电泳不易分离,如胎儿甲种球蛋白、溶菌酶、胰岛素、组蛋(5)易保存,易定量。醋酸纤维素薄膜电泳染色后,经冰乙酸、乙醇混合液或其他溶液浸泡后可制成透明的干板,有利于扫描定量及长期保存。由于醋酸纤维素薄膜电泳操作简单、快速、价廉。目前已广泛用于分析检测血浆蛋白、脂蛋白、糖蛋白、胎儿甲种球蛋白、酶、多肽、核酸及其他生物大分子。第三节琼脂糖凝胶电泳天然琼脂(agar)是一种多聚糖,主要由琼脂糖(agarose,约占80%)及琼脂胶(agaropectin)组成。琼脂糖是由半乳糖及其衍生物构成的中性物质,不带电荷。而琼脂胶是一种含硫酸根和羧基的强酸性多糖,由于这些基团带有电荷,在电场作用下能产生较强的电渗现象,加之硫酸根可与某些蛋白质作用而影响电泳速度及分离效果。目前多用琼脂糖为电泳支持物(1)琼脂糖凝胶电泳操作简单,电泳速度快,样品不需事先处理就可(2)琼脂糖凝胶结构均匀,含水量大(约占98-99%),近似自由电泳,样品扩散度较自由电泳小,对样品吸附极微,因此电泳图谱清晰,分辨(3)琼脂糖透明无紫外吸收,电泳过程和结果可直接用紫外光灯监测(4)电泳后区带易染色,样品易洗脱,便于定量测定。制成干膜可长目前,常用琼脂糖作为电泳支持物,分离蛋白质和同工酶。将琼脂糖电泳与免疫化学相结合,发展成免疫电泳技术,能鉴别其他方法不能鉴别的复杂体系,由于建立了超微量技术,0.1μg蛋白质就可检出。琼脂糖凝胶电泳也常用于分离、鉴定核酸,如DNA鉴定,DNA限制性内切酶图谱制作等。由于这种方法操作方便,设备简单,需样品量少,分辨能力高,已成为基因工程研究中常用实验方法之一。二、DNA的琼脂糖凝胶电泳琼脂糖凝胶电泳对核酸的分离作用主要依据它们的相对分子质量及分子构型,同时与凝胶的1.核酸分子大小与琼脂糖浓度的关系(1)DNA分子的大小:在凝胶中,DNA片段迁移距离(迁移率)与碱基对的对数成反比,因此通过已知大小的标准物移动的距离与未知片段的移动距离进行比较,便可测出未知片段的大小。但是当DNA分子大小超过20kb时,普通琼脂糖凝胶就很难将它们分开。此时电泳的迁移率不再依赖于分子大小,因此,应用琼脂糖凝胶电泳分离DNA时,分子大小不宜超(2)琼脂糖的浓度:如表4-1所示,不同大小的DNA需要用不同浓度的琼脂糖凝胶进行电泳分离。2.核酸构型与琼脂糖凝胶电泳分离的关系不同构型DNA的移动速度次序为:共价闭环DNA(covalentlyclosedcircular,简称cccDNA)>直线DNA>开环的双链环状DNA。当琼脂糖浓度太高时,环状DNA(一般为球形)不能进入胶中,相对迁移率为0(Rm=O),而同等大小的直线双链DNA(刚性棒状)则可以长轴方向前进(Rm>O),由此可见,这3种构型的相对迁移率主要取决于凝胶浓度,但同时,也受到电流强度、缓冲液离子强度等的影响。3.电泳方法(1)凝胶类型用于分离核酸的琼脂糖凝胶电泳可分为垂直型及水平型(平板型)。水平型电泳时,凝胶板完全浸泡在电极缓冲液下1-2mm,故又称为潜水式。目前更多用的是后者,因为它制胶和加样比较方便,电泳槽简单,易于制作,又可以根据需要制备不同规格的凝胶板,节约凝胶,因而受到人(2)缓冲液系统缺少离子时,电流太小,DNA迁移慢;相反,高离子强度的缓冲液由于电流太大会大量产热,严重时,会造成胶熔化和DNA常用的电泳缓冲液有EDTA(pH8.0)和Tris-乙酸(TAE),Tris-硼酸(TBE)或Tris-磷酸(TPE)等,浓度约为50mmol/L(pH7.5-7.8),配制方法见附录。电泳缓冲液一般都配制成浓的贮备液TAE缓冲能力较低,后两者有足够高的缓冲能力,因此更常用。TBE浓溶液长期贮存会出现沉淀,为避免此缺点,室温下贮存5×溶液,用时稀释10倍。0.5×工作也可提供足够的缓冲(3)凝胶的制备以稀释的电极缓冲液为溶剂,用沸水浴或微波炉配制一定浓度的溶胶,灌入水平胶框或垂直胶膜,插入梳子,自然冷却。(4)样品配制与加样DNA样品用适量Tris-EDTA缓冲液溶解,缓冲溶解液内含有0.25%溴酚蓝或其他指示染料,含有10%-15%蔗糖或5%-10%甘油,以增加其比重,使样品集中。为避免蔗糖或甘油可能使电泳结果产生U形条带,可改用2.5%Ficoll(聚蔗糖)(5)电泳琼脂糖凝胶分离大分子DNA实验条件的研究结果表明:在低浓度、低电压下,分离效果较好。在低电压条件下,线性DNA分子的电泳迁移率与所用的电压呈正比。但是,在电场强度增加时,较大的DNA片段迁移率的增加相对较小。因此随着电压的增高,电泳分辨率反而下降,为了获得电泳分离DNA片段的最大分辨率,电场强度不宜高于5V/cm电泳系统的温度对于DNA在琼脂糖凝胶中的电泳行为没有显著的影响。通常在室温下进行电泳,只有当凝胶浓度低于0.5%时,为增加凝胶硬度,可在4℃(6)染色和拍照常用荧光染料溴乙锭(EB)染色,在紫外光下观察DNA条带,用紫外分析仪拍照,或用凝胶成像系统输出照片,并进行有关的数据分析。三、印迹转移电泳生物化学与分子生物学的研究工作经常需要对电泳分离后的DNA进行分子杂交,但琼脂糖不适合于进行杂交操作,1975年,Southern创造了将DNA区带原位转移到硝酸基纤维素膜(NC膜)上,再进行杂交的方法,被称为Southern印迹法,具体操作方法见实验5-8。随后,Alwine等将类似方法用于RNA印迹,被戏称为Northern印迹,1979年Towbin等设计了将蛋白质从凝胶转移到硝酸纤维素膜的装置,将蛋白质转移到膜上,再与相应的抗体等配体反应,被戏称为Western印迹,这种装置将膜和凝胶、滤纸等制成夹心饼干状,用低电压高电流电泳完成转移。1982年Reinhart等用电转移法将等电聚焦后的蛋白质区带从凝胶转移到特定膜上,称Eastern印迹目前国内外有多种核酸、蛋白质印迹转移的电泳装置出售,使印迹转移速度快、效率高、重复性好,应用更加广泛,仪器的使用方法可参照厂家说明书。聚丙烯酰胺凝胶也可用于印迹转移电泳,但转移蛋白质时,凝胶中不可含有SDS、尿素等变性剂。用于转移电泳的支持膜亦有多种选择,近些年用尼龙膜较多,因为进行印迹转移电泳时,要注意缓冲液的离子强度要低,pH要远离pI,使蛋白质带有较多电荷,一般用稳定性较好的Tris-缓冲体系。还要注意凝胶与支持膜之间不能有气泡。适当提高电压或电流可以提高转移速度,但亦会增加热效应,故电压或电流不可过高。四、交变脉冲电场凝胶电泳一般琼脂糖凝胶电泳只能分离小于20kb的DNA。这是因为在琼脂糖凝胶中,DNA分子的有效直径超过凝胶孔径时,在电场作用下,迫使DNA变形挤过筛孔,而沿着泳动方向伸直,因而分子大小对迁移率影响不大。如此时改变电场方向,则DNA分子必须改变其构象,沿新的泳动方向伸直,而转向时间与DNA分子大小关系极为密切。1983年,Schwartz等人根据DNA分子弹性弛豫时间(外推为零的滞留时间)与DNA分子大小有关的特性,设计了脉冲电场梯度凝胶,交替采用两个垂直方
本文标题:电泳技术参考课件
链接地址:https://www.777doc.com/doc-7165754 .html