您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 其它文档 > 互逆命题与互逆定理-
19.4.1逆命题与逆定理回顾1、命题的概念:可以判断正确或错误的句子叫做命题。2、命题都有两部分:题设和结论判断下列命题真假并说出下列命题的题设和结论:1、平行四边形的对角线互相平分2、如果两个角相等,那么这两个角是对顶角3、等腰三角形顶角的平分线垂直平分底边驶向胜利的彼岸我能行1观察上面三组命题,你发现了什么?1、两直线平行,内错角相等;3、如果小明患了肺炎,那么他一定会发烧;4、如果小明发烧,那么他一定患了肺炎;2、内错角相等,两直线平行;5、平行四边形的对角线互相平分;6、对角线互相平分的四边形是平行四边形;说出下列命题的题设和结论:归纳1驶向胜利的彼岸概括:一般来说,在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题。如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。练习1:指出下列命题的题设和结论,并说出它们的逆命题。1、如果一个三角形是直角三角形,那么它的两个锐角互余.题设:一个三角形是直角三角形.结论:它的两个锐角互余.逆命题:如果一个三角形的两个锐角互余,那么这个三角形是直角三角形.2、等边三角形的每个角都等于60°题设:一个三角形是等边三角形.结论:它的每个角都等于60°逆命题:如果一个三角形的每个角都等于60°,那么这个三角形是等边三角形.3、全等三角形的对应角相等.题设:两个三角形是全等三角形.结论:它们的对应角相等.逆命题:如果两个三角形的对应角相等,那么这两个三角形全等.4、到一个角的两边距离相等的点,在这个角的平分线上.题设:一个点到一个角的两边距离相等.结论:它在这个角的平分线上.逆命题:角平分线上一点到角两边的距离相等.5、线段的垂直平分线上的点到这条线段的两个端点的距离相等.题设:一个点在一条线段的垂直平分线上.结论:它到这条线段的两个端点的距离相等.逆命题:到一条线段的两个端点的距离相等的点在这条线段的垂直平分线上.练习2、写出下列命题的逆命题,并判断其真假.1、同旁内角互补,两直线平行.2、有两个角相等的三角形是等腰三角形.3、如果两个角都是直角,那么这两个角相等.逆命题:两直线平行,同旁内角互补.真逆命题:如果一个三角形是等腰三角形,那么它有两个角相等.真逆命题:如果两个角相等,那么这两个角是直角.假4、如果一个整数的个位数字是5,那么这个整数能被5整除.逆命题:如果一个整数能被5整除,那么这个整数的个位数字是5.假讨论交流:在你学过的定理中,有哪些定理的逆命题是真命题?试举出几个例子说明。归纳:如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理。注意1:逆命题、互逆命题不一定是真命题,但逆定理、互逆定理,一定是真命题归纳2注意2:不是所有的定理都有逆定理其中的一个定理叫做另一个定理的逆定理。我能行2练习3、说出下列命题的逆命题,并判定逆命题的真假:①既是中心对称,又是轴对称的图形是圆。②有一组对边平行且相等的四边形是平行四边形。③磁悬浮列车是一种高速行驶时不接触地面的交通工具。逆命题:圆既是中心对称,又是轴对称的图形——真命题逆命题:平行四边形有一组对边平行并且相等——真命题。逆命题:高速行驶时,不接触地面的交通工具是磁悬浮列车——假命题。小结下课了!这节课我们学到了什么?①逆命题、逆定理的概念。②能写出一个命题的逆命题。③在证明假命题时会用举反例说明1、写出下列命题的逆命题,并判断它是真是假。(1)如果x=y,那么x2=y2;(2)如果一个三角形有一个角是钝角,那么它的另外两个角是锐角;(3)如果a=b,那么a-b=0;(4)如果ab,则ac2bc2;(5)菱形的两条对角线互相垂直;(6)三角形的一条中线平分三角形的面积.2、举例说明下列定理的逆命题是假命题。(先写出下列定理的逆命题)(1)全等三角形的对应角相等。(2)互为邻补角的两个角的和为180°。(3)矩形的两条对角线相等。(4)对顶角相等。3、如图,已知E、F分别是矩形ABCD的边BC、CD上两点,连接AE,BF.请你再从下面四个反映图中边角关系的式子(1)AB=BC;(2)BE=CF;(3)AE=BF;(4)∠AEB=∠BFC中选两个作为已知条件,选一个作为结论,组成一个真命题,并证明这个命题。ABDCEF
本文标题:互逆命题与互逆定理-
链接地址:https://www.777doc.com/doc-7256395 .html