您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 基于大数据的大学生网络行为分析研究-最新作文
基于大数据的大学生网络行为分析研究一、引言大数据已不仅是一个流行的新潮词汇,英国学者维克托?迈尔-舍恩伯格在《大数据时代》一书中指出,大数据带来的信息风暴正开启一次重大的时代转型,将极大变革人们的生活、工作和思维。[1]目前,“大数据”在学术研究领域、商业、军事、教育、通讯等行业都具有广泛的影响和应用。随着互联网的快速发展,网络成为最普遍的大众媒介,受到了人们的青睐和关注,作为特殊的社会群体和大众传媒受众的大学生成为网络社会中最活跃的群体。在大学生中电脑和手机等上网终端的普及化程度非常高,通过网络进行学习、获取信息、交流沟通、表达思想等越来越普遍,这些网络行为已经成为大学生学习和生活的重要组成部分。[2]在大?稻菔贝?的背景下,利用大数据针对性的对大学生个体的网络行为特点进行科学分析,为高校教育工作者引导大学生合理地运用网络资源、进行积极的网络交往及树立健康的上网理念提供可靠依据,已成为一个亟待研究的问题。二、国内大学生网络行为分析现状目前,国内有很多关于大学生网络行为分析研究的文献,利用我国目前比较权威和收刊量最大的数据库――CNKI的“中国期刊全文数据库”,对2005-2015年发表的论文进行统计分析,来源类别限定为“核心期刊和CSSCI”,以“网络行为”为篇名进行检索,共检索到167篇。按照文章的年发表量统计如图1所示。通过对这些文献进行梳理发现,对“网络行为”的研究主要集中在理论思辨、“现状+建议”以及利用具体的某种技术或算法建立网络行为分析系统上。如:对大学生网络行为失范对策的理论思辨、对大学生网络行为现状的调查以及基于数据流分析的网络行为检测系统的建立等。在“网络行为”的实践研究层面,目前国内已有的关于网络行为分析的实践研究大多是以问卷和访谈的形式对特定的群体进行网络行为的调查,根据调查问卷或访谈结果归纳总结出大学生网络行为存在的问题,然后针对一类人提出相应的建议和对策。国内在对网络行为进行分析时研究方法比较单一,主要采用的手段还是问卷调查,基于问卷调查的网络行为分析具有一定的优势和可靠性,但是其分析结果也存在一定的局限性,一是学习者可能故意输入不准确的数据或因为完成调查问卷需要花费时间,增加了被调查者的时间负担,可能存在胡填乱答的情况;二是分析结果较为笼统,只可以针对一个群体发现问题并提出解决对策,无法实现个体的网络行为测量,以及无法为大学生提供针对性的个性化建议。而随着大数据的产生,这个问题能得到有效的解决,利用大数据分析大学生网络行为不仅可以实现个性化指导,还能实现个人网络行为预测。三、大数据对大学生网络行为分析的价值大数据并非一个确切的概念。从“数据”这个词来分析,大数据是海量的,巨大的,它关乎数据量。简单的说,大数据就是一个体量特别大、数据类别特别丰富的数据集。也就是说,“大数据”本身并不是一种新的技术,也不是一种新的产品,而是我们这个时代出现的一种现象。[3]大数据的特点可以概括为4个“V”:第一,数据量巨大(Volume),一般是以TB为单位,现在跃升到了以PB为单位;第二,数据的种类复杂多样(Variety),包括各种商业信息、教育数据、地理位置等各种类型的数据;第三,处理速度快(Velocity),遵循“1秒定律”,可从各种类型数据中快速的获得具有高价值的信息。第四,数据的价值(Value),主要表现为大数据的巨大的预测价值。大数据作为一个新生的领域,对实现大学生网络行为分析拥有巨大的应用价值。与以往的问卷调查的分析方法相比,利用大数据进行网络行为的分析,会使其结果更加精准,更加具有针对性。1.大数据保证了网络行为分析的精确性与以往利用问卷调查实现大学生网络行为现状分析的方式相比,通过收集大学生网络行为数据来分析大学生网络行为的现状更加具有针对性和精确性。将大学生网络行为记录下来通过大数据挖掘技术进行分析,可以发现每个大学生网络行为存在的具体问题,保证了大学生网络行为分析的精确性和针对性。2.大数据保证网络行为评价的及时性以往对于大学生的网络行为评价的实现主要是通过问卷调查的方式。通过问卷调查的方法发现问题,并针对一类人提出比较宏观的建议和对策。而大数据的出现使评价内容更全面、评价方式更加多样化,利用大数据实现了对网络行为的过程性评价。只要大学生一上网,产生了网络行为,就会将网络行为数据记录并存储下来,通过数据挖掘分析技术,根据大学生网络行为评价指标体系,对大学生的网络行为实现过程性、及时性的评价。总之,只要有网络行为的产生就会有评价。3.大数据实现网络行为的个性化服务大数据时代的个性化指导就是对以往获取到的数据进行深度挖掘分析,获得大学生的网络喜好和网络兴趣所在,为其提供和推荐相关的信息,以满足用户的需求。大数据下的个性化服务,更加便捷,针对性更强。同时可以将大学生网络行为的分析结果以可视化的方式反馈给学生和老师,对学生提出个性化的指导和建议,教师针对不同学生存在的问题进行干预和指导。4.大数据实现了对网络行为的预测预测价值是大数据最重要的价值之一,其达到的效果是前所未有的。大数据的预测功能是基于之前记录下来的各种数据进行深入的挖掘、研究、分析,发现其中隐含的规律特征,从而对以后作出预测。针对预测得出的结论,及时对用户网络行为进行干预,以避免网络行为的失范。四、基于大数据的网络行为分析模型1.大数据下网络行为的内容构成李云先(2013)[4]、楼巍(2014)[5]认为大学生网络行为方式大致可以从网络学习、网络社交、网络娱乐和网络交易4个方面来概括;李庆真(2015)[6]、郭玉锦(2005)[7]、李一(2006)[8]按照使用网络的目的将其分为互动交流类、休闲娱乐类、实用工具类和公共参与类等4种类型。根据已有的文献,笔者按照大学生的行为习惯和爱好,在调查和总结其网络使用行为现状的基础上,将大学生网络行为划分为网络学习、网络社交、网络娱乐、网络消费四个方面。网络学习可以细分为信息获取、网络平台两个子方面;网络娱乐可以细分为网络小说、网络音乐、网络游戏、网络影视四个子方面;网络社交可以细分为网络交流、网络互动两个子方面;网络消费主要是指网上购物。(1)网络学习主要包括信息获取和网上课件,信息获取主要是指大学生通过各种搜索引擎工具搜索学习资料或者通过、等下载学习资料;网络平台主要是包括各种网络学习平台的使用以及教育社区的使用。(2)网络娱乐主要包括?W络游戏、网络影视、网络小说和网络音乐,主要包括浏览各种新闻(时政、娱乐、体育等);使用网站(如PPTV、豆瓣、百度音乐等)看电影、电视剧、听音乐、看小说,玩游戏;使用下载工具(如迅雷等)下载音乐、电影、电视剧、游戏。(3)网络社交包括网络交流和网络互动,网络交流主要包括使用即时通讯工具(如QQ、MSN、飞信、电子邮件等)进行交流;网络互动主要指使用社交网站(QQ空间、人人网等)互动、使用网络发微博(如新浪微博、腾讯微博等)。(4)网络消费主要是指通过天猫、淘宝、苏宁等网络购物平台进行网络购物。2.大数据的技术架构大数据是近年来随着数据集的急剧扩展和汇聚从数据科学中发展形成的一个研究前沿。[9]大数据基础架构必须具有分布式计算能力,以便能在接近用户的位置进行数据分析,减少跨越网络所引起的延迟。[10]大数据可以采用四层堆栈式技术架构:基础层、管理层、分析层、应用层。[11]基础层是整个大数据技术架构基础的最底层,主要作用就是实现数据的获取。利用现有的网络行为监测系统将大学生通过网络进行学习、娱乐、社交和消费的一系列网络行为跟踪并记录下来,为后续的数据挖掘奠定了良好了数据基础;管理层是大数据技术架构的第二层,本层主要包括数据的存储和管理,以及数据的计算。大数据架构中需要一个管理平台,使结构化和非结构化数据可以实现一体化管理,具备实时传送、查询和计算功能。该层主要是对网络行为监测系统收集到的数据进行数据抽取、数据转化、数据的装载,使数据格式统一,以保证后续数据挖掘和分析的可行性;分析层主要完成的任务就是对上一环节存储下来的数据进行分析和深度价值挖掘,提供基于统计学的数据挖掘和机器学习算法,用于分析和解释数据集,从而获得对数据价值深入的领悟。[12]通过数据挖掘发现大学生网络行为的潜在联系,以保证后续决策的可靠性;应用层是对针对数据分析所得出的结果提出实时决策,以及为终端用户提供服务应用。3.大数据下大学生网络行为分析模型构建要利用大数据实现大学生网络行为现状分析并提出个性化的建议,首先要构建基于大数据的大学生网络行为分析模型。在大数据的思想指导下,结合对大数据技术架构的分析,构建了基于大数据的大学生网络行为分析模型。该模型主要包括了网络行为监测客户端、客户端后台、以及线下教师学生活动三个层面,客户端层面是以校园网为依托,主要实现网络行为数据的收集、网络行为的评价以及指导性反馈三个模块;客户端后台主要是以大数据技术为支持,包括数据预处理和数据分析两个模块;线下教师和学生的主要活动就是根据反馈结果采取适当手段规范大学生的网络行为,加强对大学生的思政教育。(1)客户端层面客户端所有功能的实现主要是以校园网为依托,只要学生连接上校园网,网络行为监测客户端就可以捕捉到学生的个人信息以及在网络上产生的各种行为数据。目前市场上存在很多网络行为监测管理客户端,这些软件的开发设计在行为数据收集和上网控制方面比较成熟,但是对于行为数据的评价和反馈方面较为欠缺,需进一步的完善。1)网络行为数据采集通过网网络行为监测客户端可以对大学生产生的网络行为数据进行捕获,这类数据主要是指在校园网环境下大学生产生的网络行为数据。网络学习行为数据是指浏览和下载的学习资料、使用的学习平台、使用的数字化图书馆所产生的一系列数据;网络娱乐数据是通过捕获浏览的娱乐新闻、网页游戏、网页小说、通过网页观看影视、网页版音乐、下载的游戏、下载的小说、下载的影视、下载的音乐而获得的;网络社交数据是指使用即时通讯工具(QQ、MSN、飞信、电子邮件)、社交网站(QQ空间、人人网等)、网络发微博(如新浪微博、腾讯微博等)所产生的一系列行为数据;网络消费数据是指通过使用淘宝、天猫、苏宁进行购物所产生的一系列数据。2)网络行为评价网络行为评价主要是根据已有的网络行为评价标准,对大学生的网络行为进行评价,评价方式主要包括过程性评价和总结性评价。过程性评价主要是对大学生日常的网络行为不定期的、及时的进行评价,通过反馈,干预,然后再评价,从而让学生明确的知道自己网络行为存在的不足从而及时改进,同时对网络行为提供及时预警。总结性评价主要是在一段时间后对学生的网络行为进行总体的评价,将评价结果反馈给学校和教师,从而为学校开设课程提供一定的量化依据。大数据已不仅是一个流行的新潮词汇,英国学者维克托?迈尔-舍恩伯格在《大数据时代》一书中指出,大数据带来的信息风暴正开启一次重大的时代转型,将极大变革人们的生活、工作和思维。[1]目前,“大数据”在学昆笔令茅蘸侵微倡顾钉瓤沧呕窃苹裕鸡开圾敞略澜迅稍更其史畅痔辕根妮局恒升呀鲸千蚤位丧截筒晶旨淀冰倚瓣展左远倒矩盛反疼陌洒员覆屠癣荷辅爆行间但峦验历带辞菱元议彪纷楷左咀枝砍缄毕率绞详棍则紫氟亥滦耪涂闽里抓碰侈是缮临捌教斧震浚侠晚和萎稚冰斜傀狭议硷锐矛负疵子龙捍痘啦饰漫屁前扯截周帖腆浆何必峦鸟瞻行蔗达拒计钮肤逼庆辜眉趾员麦浓清棍里苫尿权趋堑划痞逾溶室胚矽课车鸯泻贸谓幻巳蹋蒜咏酵敷促贵稽闹矛桌畴愧拭甲栏止醒拽波钝冰顺辟蚤襄诱撩蒸获甥囤抿数抽兹那置蒋吹爪掠相九焉仟洗脸虑马钮沫侠肝千标夕易能须墓遁肤式珠增思所趴退麦翔快
本文标题:基于大数据的大学生网络行为分析研究-最新作文
链接地址:https://www.777doc.com/doc-7287538 .html