您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > (完整版)简单的三角恒等变换练习题
3.2简单的三角恒等变换一、填空题1.若25π<α<411π,sin2α=-54,求tan________________2.已知sinθ=-53,3π<θ<2π7,则tan的值为___________.4.已知α为钝角、β为锐角且sinα=54,sinβ=1312,则cos的值为____________.5.设5π<θ<6π,cos=a,则sin的值等于________________二、解答题6.化简2cos2sin12cos2sin1.7.求证:2sin(4π-x)·sin(4π+x)=cos2x.8.求证:tan1tan1sincoscossin2122a.9.在△ABC中,已知cosA=BbabBacoscos,求证:babaBA2tan2tan22.10.求sin15°,cos15°,tan15°的值.11.设-3π<α<-2π5,化简2)πcos(1.12.求证:1+2cos2θ-cos2θ=2.13.求证:4sinθ·cos2=2sinθ+sin2θ.14.设25sin2x+sinx-24=0,x是第二象限角,求cos2x的值.15.已知sinα=1312,sin(α+β)=54,α与β均为锐角,求cos.参考答案一、填空题1.215.2.-34.656575.-21a二、解答题6.解:原式=2cos2sin12cos2sin1=22cos2cossin21sin21cossin21=22cos2cossin2sincossin2=)cos(sincos2sincossin2=tanθ.7.证明:左边=2sin(4π-x)·sin(4π+x)=2sin(4π-x)·cos(4π-x)=sin(2π-2x)=cos2x=右边,原题得证.8.证明:左边=22sincoscossin21=)sin(cos)sin(coscossin2sincos22=)sin)(cossin(cos)sin(cos2=sincossincos=tan1tan1=右边,原题得证.9.证明:∵cosA=BbabBacoscos,∴1-cosA=BbaBbacos)cos1()(,1+cosA=BbaBbacos)cos1()(.∴)cos1()()cos1()(cos1cos1BbaBbaAA.而2tan2cos22sin2cos1cos1222ABAAA,2tancos1cos12BBB,∴tan2)()(2babaA·tan22B,即babaBA2tan2tan22.10.解:因为15°是第一象限的角,所以sin15°=4264)26(43482322231230cos12,cos15°=4264)26(43482322231230cos12,tan15°=30cos130cos1=2-3.11.解:∵-3π<α<-2π5,∴-2π3<<-4π5,cos<0.又由诱导公式得cos(α-π)=-cosα,∴cos12)πcos(1=-cos.12.证明:左边=1+2cos2θ-cos2θ=1+2·22cos1-cos2θ=2=右边.13.证明:左边=4sinθ·cos2=2sinθ·2cos2=2sinθ·(1+cosθ)=2sinθ+2sinθcosθ=2sinθ+sin2θ=右边.14.解:因为25sin2x+sinx-24=0,所以sinx=2524或sinx=-1.又因为x是第二象限角,所以sinx=2524,cosx=-257.又2x是第一或第三象限角,从而cos2x=±225712cos1x=±53.15.解:∵0<α<2π,∴cosα=135sin12.又∵0<α<2π,0<β<2π,∴0<α+β<π.若0<α+β<2π,∵sin(α+β)<sinα,∴α+β<α不可能.故2π<α+β<π.∴cos(α+β)=-53.∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=-53·54135·65331312,∵0<β<2π,∴0<2<4π.故cos656572cos1.
本文标题:(完整版)简单的三角恒等变换练习题
链接地址:https://www.777doc.com/doc-7294102 .html