您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2018-2019深圳中学八年级(上)期末数学试卷
2018-2019学年广东省深圳中学八年级(上)期末数学试卷一、选择题1.(3分)下列说法正确的是()A.0是无理数B.π是有理数C.4是有理数D.是分数2.(3分)如图,AB=AC,则数轴上点C所表示的数为()A.+1B.﹣1C.﹣+1D.﹣﹣13.(3分)下列运算中正确的是()A.B.C.D.4.(3分)若a>b成立,则下列不等式成立的是()A.﹣a>﹣bB.﹣a+1>﹣b+1C.﹣(a﹣1)>﹣(b﹣1)D.a﹣1>b﹣15.(3分)甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80858580方差42425459A.甲B.乙C.丙D.丁6.(3分)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.7.(3分)若一个正比例函数的图象经过A(3,6)、B(m,4)两点,则m的值为()A.2B.8C.﹣2D.﹣88.(3分)如图,已知a∥b,小明把三角板的直角顶点放在直线b上,若∠1=35°,则∠2的度数为()A.65°B.120°C.125°D.145°9.(3分)在平面直角坐标系xOy中,以原点O为圆心,任意长为半径作弧,分别交x轴的负半轴和y轴的正半轴于A点,B点.分别以点A,点B为圆心,AB的长为半径作弧,两弧交于P点.若点P的坐标为(a,b),则()A.a=2bB.2a=bC.a=bD.a=﹣b10.(3分)小李家去年节余50000元,今年可节余95000元,并且今年收入比去年高15%,支出比去年低10%,今年的收入与支出各是多少?设去年的收入为x元,支出为y元,则可列方程组为()A.B.C.D.11.(3分)如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()A.x<﹣2B.﹣2<x<﹣1C.﹣2<x<0D.﹣1<x<012.(3分)如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=,则PE+PF的长是()A.B.6C.D.二、填空题13.(3分)已知点A(1,﹣2)关于x轴对称的点是点B,则AB=.14.(3分)当k<0时,一次函数y=kx+19的图象不经过第象限.15.(3分)某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为分.16.(3分)如图,在Rt△ABC中,AC=3,BC=4,分别以它的三边为直径向上作三个半圆,则阴影部分面积为.(不取近似值)17.(3分)已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为°.18.(3分)如图,△ABC是边长为1的等边三角形,过点C的直线m平行AB,D、E分别是线段AB、直线m上的点,先按如图方式进行折叠,点A、C分别落在A′、C′处,且A′C′经过点B,DE为折痕,当C′E⊥m时,的值为.三、解答题19.计算:20.解方程组:21.如图,A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B.求∠AEC的度数.22.为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表:组别身高Ax<160B160≤x<165C165≤x<170D170≤x<175Ex≥175根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组;(2)样本中,女生身高在E组的有人,E组所在扇形的圆心角度数为;(3)已知该校共有男生600人,女生480人,请估让身高在165≤x<175之间的学生约有多少人?23.某商场按定价销售某种商品时,每件商品可以获利140元,已知按定价的八折销售该商品3件与将定价降低20元销售该商品2件所获得的利润相等,请求出该商品的进价和定价分别是多少?24.如图,lA,lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)B走了一段路后,自行车发生故障,进行修理,所用的时间是小时.(3)B出发后小时与A相遇.(4)若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B的出发点千米.在图中表示出这个相遇点C.(5)求出A行走的路程S与时间t的函数关系式.(写出过程)25.如图1,已知B(0,b)(b>0)是y轴上一动点,直线l经过点A(1,0)及点B,将Rt△ABO折叠,使得点B与点O重合,折痕分别交y轴、直线AB于点E、F,连接OF.(1)当b=2时,求直线l的函数解析式;(2)请用含有字母b的代数式表示线段OF的长,并说明线段OF与线段AB的数量关系;(3)如图2,在(1)的条件下,设点P是线段AB上一动点(不与A、B重合),将线段OP绕点O逆时针旋转至OQ,连结BQ、PQ,PQ交y轴于点T,设点P的横坐标为t.①当△OPQ的面积最小时,求T的坐标;②若△OPB是等腰三角形,请直接写出满足条件的t的值;③若△QPB是直角三角形,请直接写出满足条件的t的值.2018-2019学年广东省深圳中学八年级(上)期末数学试卷参考答案与试题解析一、选择题1.【解答】解:A、0是有理数,所以A选项错误;B、π不是有理数,是无理数,所以B选项错误;C、4是有理数中的正整数,所以C选项正确;D、是一个无理数,所以选项D错误.故选:C.2.【解答】解:由勾股定理得,AB==,∴AC=,∵点A表示的数是﹣1,∴点C表示的数是﹣1.故选:B.3.【解答】解:A、原式=,故本选项错误.B、原式=2,故本选项错误.C、原式=,故本选项错误.D、原式=|﹣3|=3,故本选项正确.故选:D.4.【解答】解:A、不等式a>b两边都乘﹣1,不等号的方向不变,不等式不成立,不符合题意;B、不等式a>b两边都乘﹣1,不等号的方向改变,都加1,不等号的方向不变,不等式不成立,不符合题意;C、不等式a>b两边都减1,不等号的方向不变,都乘﹣1,不等号的方向改变,不等式不成立,不符合题意;D、不等式a>b两边都减1,不等号的方向不变,不等式成立,符合题意;故选:D.5.【解答】解:由于乙的方差较小、平均数较大,故选乙.故选:B.6.【解答】解:由①,得x≥2,由②,得x<3,所以不等式组的解集是:2≤x<3.不等式组的解集在数轴上表示为:.故选:A.7.【解答】解:设正比例函数的解析式为y=kx,将点A(3,6)代入y=kx,得:6=3k,解得:k=2,∴正比例函数的解析式为y=2x.当y=4时,2x=4,解得:x=2,∴m=2.故选:A.8.【解答】解:如图所示,∵∠1=35°,∠ACB=90°,∴∠ACD=125°,∵a∥b,∴∠AEB=∠ACD=125°,∴由图可得∠2=∠AEB=125°,故选:C.9.【解答】解:由“以原点O为圆心,任意长为半径作弧,分别交x轴的负半轴和y轴的正半轴于A点,B点”知OA=OB,即△OAB是以OA、OB为腰的等腰直角三角形,根据“分别以点A,点B为圆心,AB的长为半径作弧,两弧交于P点”知点P在AB的中垂线上,则OP垂直平分AB,即点P是第二、四象限的平分线,若点P的坐标为(a,b),则a=﹣b,故选:D.10.【解答】解:设去年的收入为x元,支出为y元,由题意得:,故选:B.11.【解答】解:不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,显然,这些点在点A与点B之间.故选:B.12.【解答】解:(1)作PM⊥AC于点M,可得矩形AEPM∴PE=AM,利用DB=DC得到∠B=∠DCB∵PM∥AB.∴∠B=∠MPC∴∠DCB=∠MPC又∵PC=PC.∠PFC=∠PMC=90°∴△PFC≌△CMP∴PF=CM∴PE+PF=AC∵AD:DB=1:3∴可设AD=x,DB=3x,那么CD=3x,AC=2x,BC=2x∵BC=∴x=2∴PE+PF=AC=2×2=4.(2)连接PD,PD把△BCD分成两个三角形△PBD,△PCD,S△PBD=BD•PE,S△PCD=DC•PF,S△BCD=BD•AC,所以PE+PF=AC=2×2=4.故选:C.二、填空题13.【解答】解:∵点A(1,﹣2)关于x轴对称的点是点B,∴B(1,2),∴AB=2﹣(﹣2)=4.故答案为:4.14.【解答】解:∵k>0,19>0,∴一次函数y=kx+3k的图象经过第一、二、三象限,即不经过第四象限.故答案为:四.15.【解答】解:根据题意得:(80×3+90×5+100×2)÷(3+5+2)=89(分);故答案为:89.16.【解答】解:以BC为直径的半圆的面积是2π,以AC为直径的半圆的面积是π()2=,以AB为直径的面积是×π()2=,△ABC的面积是6,因而阴影部分的面积是2π++6﹣=6.17.【解答】解:设∠A=x,根据翻折不变性可知∠A=∠EDA=x,∠C=∠BED=∠A+∠EDA=2x,∵AB=AC,∴∠ABC=∠C=2x,∵∠A+∠ABC+∠C=180°,∴5x=180°,∴x=36°,∴∠ABC=72°故答案为7218.【解答】解:∵C′E⊥m,∴∠CEC′=90°,∵DE为折痕,∴∠C′ED=∠CED=45°,∵m∥AB,∴∠BDE=∠DEC=45°,∵△ABC是等边三角形,∴AB=AC=1,∠A=∠ABC=∠ACB=60°,设CB与DE交于点F,如图所示:则∠DFB=∠CFE=75°,∴∠BCE=60°,∴∠ACE=∠C′=120°,∵∠A=∠A′=60°,∴∠A′DE=135°,∴∠A′DB=90°,∴A′B=2A′D,∵A′D=AD,设AD=x,则BA′=2x,BD=1﹣x,A′D=x,BC′=1﹣2x,在Rt△A′BD中,由勾股定理得:x2+(1﹣x)2=(2x)2,解得:x=(负值舍去),∴x=,∴BA'=﹣1+,BC'=1﹣(﹣1+)=2﹣,∴==1+;故答案为:1+.三、解答题19.【解答】解:原式=1+﹣1=2.20.【解答】解:①×2﹣②,可得:x=2③,把③代入①,可得:4+y=5,解得y=1,∴原方程组的解是.21.【解答】解:连接DE∵A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B,∴CD=CE=DE,∴△CDE为等边三角形.∴∠C=60°.∴∠AEC=90°﹣∠C=30°.22.【解答】解:(1)∵直方图中,B组的人数为12,最多,∴男生的身高的众数在B组,男生总人数为:4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C组,∴男生的身高的中位数在C组,故答案为:B,C;(2)女生身高在E组的百分比为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E组的人数有:40×5%=2(人),E组所在扇形的圆心角度数为360°×(1﹣17.5%﹣37.5%﹣25%﹣15%)=36°故答案为:2,36°;(3)600×+480×(25%+15%)=270+192=462(人).答:该校身高在165≤x<175之间的学生约有462人.23.【解答】解:设该商品的进价为x元,则定价为y元,由题意得,解得:.答:商品的进价为160元,定价为300元.24.【解答】解:(1)依题意得B出发时与A相距10千米;(2)B走了一段路后,自行车发生故障,进行修理,所用的时间是1小时;(3)B出发后3小时与A相遇;(4)∵B开始的速度为7.5÷0.5=15千米/时,A的速度为(22.5﹣10)÷3=(千米/时),并且出发时和A相距10千米,10÷(15﹣)=(小时),相遇点离B的出发点
本文标题:2018-2019深圳中学八年级(上)期末数学试卷
链接地址:https://www.777doc.com/doc-7298169 .html