您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 市场营销 > 高等代数(北大版)第5章习题参考答案[1]
第五章二次型1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。1)323121224xxxxxx;2)23322221214422xxxxxxx;3)32312122216223xxxxxxxx;4)423243418228xxxxxxxx;5)434232413121xxxxxxxxxxxx;6)4342324131212422212222442xxxxxxxxxxxxxxx;7)43322124232221222xxxxxxxxxx。解1)已知323121321224,,xxxxxxxxxf,先作非退化线性替换33212211yxyyxyyx(1)则312221321444,,yyyyxxxf2223233121444yyyyyy222333142yyyy,再作非退化线性替换33223112121zyzyzzy(2)则原二次型的标准形为2322213214,,zzzxxxf,最后将(2)代入(1),可得非退化线性替换为333212321121212121zxzzzxzzzx(3)于是相应的替换矩阵为100211212102110001021021100011011T,且有100040001ATT。2)已知321,,xxxf23322221214422xxxxxxx,由配方法可得233222222121321442,,xxxxxxxxxxxf2322212xxxx,于是可令333222112xyxxyxxy,则原二次型的标准形为2221321,,yyxxxf,且非退化线性替换为33322321122yxyyxyyyx,相应的替换矩阵为100210211T,且有000010001100210211420221011122011001ATT。(3)已知32312122213216223,,xxxxxxxxxxxf,由配方法可得23322223223231212132144222,,xxxxxxxxxxxxxxxxf23223212xxxxx,于是可令3332232112xyxxyxxxy,则原二次型的标准形为2221321,,yyxxxf,且非退化线性替换为33322321121212321yxyyxyyyx,相应的替换矩阵为1002121023211T,且有00001000110021210232110313311111212302121001ATT。(4)已知4232432143218228,,,xxxxxxxxxxxxf,先作非退化线性替换443322411yxyxyxyyx,则4232432441432182288,,,yyyyyyyyyxxxxf232132142481212181212128yyyyyyyy32232128121218yyyyy3223212432124128121218yyyyyyyyy,再作非退化线性替换4432332211zyzzyzzyzy,则2321243214321434528385218,,,zzzzzzzxxxxf232222zz,再令43214332232118385214345zzzzwzwzwxxzw,则原二次型的标准形为4321,,,xxxxf242322218222,且非退化线性替换为4143233224321121434521wwxwwxwwx,相应的替换矩阵为10021011001101434521T,且有8000020000200002ATT。(5)已知4321,,,xxxxf434232413121xxxxxxxxxxxx,先作非退化线性替换4433222112yxyxyxyyx,则4321,,,xxxxf4342413231222122222yyyyyyyyyyyyy2124243243214321yyyyyyyy,再作非退化线性替换44433432121121yzyyzyyyyzyz,即4443343212112121zyzzyzzzzyzy,则原二次型的标准形为4321,,,xxxxf2423222143zzzz,且非退化线性替换为444334321243211212121zxzzxzzzzxzzzzx,相应的替换矩阵为1000211002111121111T,且有43000010000100001ATT。(6)已知4321,,,xxxxf4131212422212442xxxxxxxxx434232222xxxxxx,由配方法可得4321,,,xxxxf243243212122222xxxxxxxx43423224222432222222xxxxxxxxxxx243243224321212123222xxxxxxxxx,于是可令44433432243211212322xyxxyxxxyxxxxy,则原二次型的标准形为232221212yyyf,且非退化线性替换为44433432243211232yxyyxyyyxyyyyx,故替换矩阵为10001100123101121T,且有00000210000200001ATT。(7)已知4321,,,xxxxf43322124232221222xxxxxxxxxx,由配方法可得4321,,,xxxxf24433123131222222xxxxxxxxxxx2324432331232122xxxxxxxxxx2121233124323212xxxxxxxxxx231243232121xxxxxxxx,于是可令314433321211xxyxxyxxxyxy,则原二次型的标准形为24222221yyyyf,且非退化线性替换为431441342211yyyxyyxyyxyx,相应的替换矩阵为1101100110100001T,且有1000010000100001ATT。(Ⅱ)把上述二次型进一步化为规范形,分实系数、复系数两种情形;并写出所作的非退化线性替换。解1)已求得二次型321,,xxxf323121224xxxxxx的标准形为23222134yyyf,且非退化线性替换为333212321121212121yxyyyxyyyx,(1)在实数域上,若作非退化线性替换13223121zyzyzy,可得二次型的规范形为232221zzzf。(2)在复数域上,若作非退化线性替换13221121zyzyizy,可得二次型的规范形为232221zzzf。2)已求得二次型321,,xxxf23322221214422xxxxxxx的标准形为2221yyf,且非退化线性替换为33322321122yxyyxyyyx,故该非退化线性替换已将原二次型化为实数域上的规范形和复数域上的规范形2221yyf。3)已求得二次型321,,xxxf32312122216223xxxxxxxx的标准形为2221yyf,且非退化线性替换为33322321121212321yxyyxyyyx,(1)在实数域上,上面所作非退化线性替换已将二次型化为规范形,即2221yyf。(2)在复数域上,若作非退化线性替换332211zyizyzy。可得二次型的规范形为2221zzf。(3)已求得二次型4321,,,xxxxf423243218228xxxxxxxx的标准形为242322218222yyyyf,且非退化线性替换为4143233224321121434521yyxyyxyyxyyyyx,(1)在实数域上,若作非退化线性替换14332241221212121zyzyzyzy,可得二次型的规范形为22232221zzzzf。(2)在复数域上,若作非退化线性替换443322112212212zyziyzyziy,可得二次型的规范形为22232221zzzzf。(5)已求得二次型4321,,,xxxxf434232413121xxxxxxxxxxxx的标准形为2423222143yyyyf,且非退化线性替换为444334321243211212121yxyyxyyyyxyyyyx,(1)在实数域上,若作非退化线性替换4433122132zyzyzyzy,可得二次型的规范形为24232221zzzzf。(2)在复数域上,若作非退化线性替换4433221132izyizyzyizy,可得二次型的规范形为24232221zzzzf。6)已求得二次型4321,,,xxxxf4131212422212442xxxxxxxxx434232222xxxxxx的标准形为232221212yyyf,且非退化线性替换为44433432243211232yxyyxyyyxyyyyx。(1)在实数域上,若作非退化线性替换44133221221zyzyzyzy,可得二次型的规范形为232221zzzf。(2)在复数域上,若作非退化线性替换4433221122zyzyziyizy,可得二次型
本文标题:高等代数(北大版)第5章习题参考答案[1]
链接地址:https://www.777doc.com/doc-7311854 .html