您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 长春高三一模数学理科
长春高三一模数学理科————————————————————————————————作者:————————————————————————————————日期:ﻩ长春市普通高中2019届高三质量监测(一)数学试题卷(理科)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数(13)(3)iiA.10B.10C.10iD.10i2.已知集合{0,1}M,则满足条件MNM的集合N的个数为A.1B.2C.3D.43.函数()sin()sin3fxxx的最大值为,A.3B.2C.23D.44.下列函数中是偶函数,且在区间(0,)上是减函数的是A.||1yxB.2yxC.1yxxD.||2xy5.已知平面向量a、b,满足||||1ab,若(2)0abb,则向量a、b的夹角为A.30B.45C.60D.1206.已知等差数列{}na中,nS为其前n项的和,45S,920S,则7aA.3B.5C.3D.57.在正方体1111ABCDABCD中,直线11AC与平面11ABCD所成角的正弦值为A.1B.32C.22D.128.要将甲、乙、丙、丁4名同学分到A、B、C三个班级中,要求每个班级至少分到一人,则甲被分到A班的分法种数为,A.6B.12C.24D.369.某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为1.1630.75yx,以下结论中不正确的为190185180175170165160155150145123456789101112131415身高X臂展YA.15名志愿者身高的极差小于臂展的极差B.15名志愿者身高和臂展成正相关关系,C.可估计身高为190厘米的人臂展大约为189.65厘米,D.身高相差10厘米的两人臂展都相差11.6厘米,10.我国古代数学著作《九章算术》有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一头五升(注:一斗为十升).问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的2.5S(单位:升),则输入的k值为,A.4.5B.6C.7.5D.1011.已知双曲线22221(0,0)xyabab的两个顶点分别为A、B,点P为双曲线上除A、B外任意一点,且点P与点A、B连线的斜率分别为1k、2k,若123kk,则双曲线的渐进线方程为,A.yxB.2yxC.3yxD.2yx12.已知函数()fx是定义在R上的函数,且满足()()0fxfx,其中()fx为()fx的导数,设(0)af,2(ln2)bf,(1)cef,则a、b、c的大小关系是A.cbaB.abcC.cabD.bca二、填空题:本题共4小题,每小题5分.13.24log4log2.14.若椭圆C的方程为22134xy,则其离心率为.15.各项均为正数的等比数列{}na的前n项和为nS,已知630S,970S,则是否开始输入k输出S1,nSk1nnSSSn4?n结束3S.16.已知所有棱长都相等的三棱锥的各个顶点同在一个半径为3的球面上,则该三棱锥的表面积为.三、解答题:共70份,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22~23选考题,考生根据要求作答.(一)必考题:共60分17.(本小题满分12分)在ABC中,内角A、B、C的对边分别为a、b、c,已知1cos2baCc.(1)求角A;(2)若3ABAC,求a的最小值.18.(本小题满分12分)在四棱锥PABCD中,平面PAD平面ABCD,2PAPD,四边形ABCD是边长为2的菱形,60A,E是AD的中点.(1)求证:BE平面PAD;(2)求平面PAB与平面PBC所成的锐二面角的余弦值.19.(本小题满分12分)平面直角坐标系中,O为坐标原点,已知抛物线C的方程为22(0)ypxp.(1)过抛物线C的焦点F且与x轴垂直的直线交曲线C于A、B两点,经过曲线C上任意一点Q作x轴的垂线,垂足为H.求证:2||||||QHABOH;(2)过点(2,2)D的直线与抛物线C交于M、N两点且OMON,ODMN.求抛物线C的方程.20.(本小题满分12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:EDCBAP[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)216362574最高气温天数以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时?Y的数学期望达到最大值?21.(本小题满分12分)已知函数21()(,)2xfxebxaxabR.(1)当1a且1b时,试判断函数()fx的单调性;(2)若1ae且1b,求证:函数()fx在[1,)上的最小值小于12;(3)若()fx在R单调函数,求ab的最小值.(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做则按所做的第一题计分.22.(本小题满分10分)选修4-4坐标系与参数方程选讲已知直线l的参数方程为1cossinxtyt(t为参数,0≤),以原点为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为212cos4sin.(1)求圆C的直角坐标方程;(2)若直线l与圆C相交于A、B两点,且||23AB,求的值.23.(本小题满分10分)选修4-5不等式选讲已知0a,0b,2ab.(1)求证:222ab≥;(2)求证:21212ab≥.长春市普通高中2019届高三质量监测(一)数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分)1.C【命题意图】本题考查复数的运算.ﻩ【试题解析】C(13)(3)10iii.故选C.2.D【命题意图】本题考查集合运算.ﻩ【试题解析】DMNM有NM.故选D.3.A【命题意图】本题考查三角函数的相关知识.【试题解析】A由题意可知函数最大值为3.故选A.4.B【命题意图】本题主要考查函数的性质.【试题解析】B由函数是偶函数,排除C,在(0,)上是减函数,排除A,D.故ﻩ选B.5.C【命题意图】本题考查平面向量的相关知识.【试题解析】C由题意知2120,cos,2abbab.故选C.6.C【命题意图】本题主要考查等差数列的相关知识.【试题解析】C9475SSa.故选C7.D【命题意图】本题考查线面成角.【试题解析】D由题意知成角为6.故选D.8.Bﻩ【命题意图】本题主要考查计数原理的相关知识.【试题解析】Bﻩ由题意可分两类,第一类,甲与另一人一同分到A,有6种;第二类,甲单独在A,有6种,共12种.故选B.9.D【命题意图】本题主要考查统计相关知识.【试题解析】D由统计学常识可知,D选项正确.故选D.10.D【命题意图】本题主要考查中华传统文化.【试题解析】D由题可知10k.故选D.11.C【命题意图】本题考查双曲线的相关知识.【试题解析】C由题意可知22222223,13yxyxaaa,从而渐近线方程为ﻩ3yx.故选C.12.A【命题意图】本题是考查导数在研究函数单调性上的应用.【试题解析】A令()(),()(()())0xxgxefxgxefxfx,所以()gx在定义域内单调递增,从而(0)(ln2)(1)ggg,得(0)2(ln2)(1)ffef,即abc.故选A.二、填空题(本大题共4小题,每小题5分,共20分)13.52【命题意图】本题考查对数运算.【试题解析】由题意可知值为52.14.12【命题意图】本题考查椭圆的相关知识.【试题解析】12,3,1,2abce.15.10【命题意图】本题考查等比数列的相关知识.【试题解析】由题意可得263396()()SSSSS,得310S.16.83【命题意图】本题考查球的相关知识.【试题解析】由题意可知其2134(22)8322S.三、解答题17.(本小题满分12分)【命题意图】本题考查解三角形的基本方法.ﻩ【试题解析】解:(1)由cCab21cos可得1sinsincossin2BACC,所以ﻩ1cos,23AA.(2)由(1)及3ACAB得6bc,所以222222cos6abcbcAbcﻩ266bc,当且仅当=bc时取等号,所以a的最小值为6.18.(本小题满分12分)【命题意图】本小题以四棱锥为载体,考查立体几何的基础知识.本题考查学生的空间想象能力、推理论证能力和运算求解能力.ﻩ【试题解析】解:(1)连接BD,由2PAPD,E是AD的中点,得PEAD,由平面PAD平面ABCD,可得PE平面ABCD,PEBE,又由于四边形ﻩABCD是边长为2的菱形,60A,所以BEAD,从而BE平面PAD.(2)以E为原点,,,EAEBEP为,,xyz轴,建立空间直角坐标系,(0,0,3)P,(1,0,0),(0,3,0),(2,3,0)ABC,有(1,0,3),(0,3,3)PAPB,(2,3,3)PC,令平面PAB的法向量为n,由00PAnPBn,可得一个(3,1,1)n,同理可得平面PBC的一个法向量为(0,1,1)m,所以平面PAB与平面PBC所成锐二面角的余弦值为||105||||mnmn.19.(本小题满分12分)ﻩ【命题意图】本小题考查抛物线的相关知识.ﻩ【试题解析】答案:(1)设00000(,),(,0),||||,||,QxyHxQHyOHxﻩ||2ABp,从而2200||2||||QHypxABOH.(2)由条件可知,:4MNyx,联立直线MN和抛物线C,有242yxypx,有2280ypyp,设1122(,),(,)MxyNxy,由OMON有12120xxyy,有1212(4)(4)0yyyy,由韦达定理可求得2p,所以抛物线2:4Cyx.20.(本小题满分12分)【命题意图】本题考查离散型随机变量的分布列及数学期望.ﻩ【试题解析】(1)由题意知,X所有可能取值为200,300,500,由表格数据知2162000.290PX,363000.490PX,25745000.490PX.ﻩ因此X的分布列为X200300500P0.20.40.4ﻩ(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200500n≤≤.当300500n≤≤时,若最高气温不低于25,则642Ynnn;若最高气温位于区间20,25,则63002300412002Ynnn;ﻩ若最高气温低于20,则6200220048002Ynnn;因此20.4120020.480020.26400.4EYnnnn.当200300n≤时,若最高气温不低于20,则642Ynnn
本文标题:长春高三一模数学理科
链接地址:https://www.777doc.com/doc-7402516 .html