您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 【CN110033125A】一种基于模糊逻辑Petri网的业务流程分析方法【专利】
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号(43)申请公布日(21)申请号201910191368.3(22)申请日2019.03.14(71)申请人山东科技大学地址266590山东省青岛市黄岛区经济技术开发区前湾港路579号(72)发明人刘伟 蔺茂 闫春 杜玉越 冯新 张志豪 (74)专利代理机构青岛智地领创专利代理有限公司37252代理人种艳丽(51)Int.Cl.G06Q10/04(2012.01)G06Q10/06(2012.01)G06Q30/06(2012.01)(54)发明名称一种基于模糊逻辑Petri网的业务流程分析方法(57)摘要本发明公开了一种基于模糊逻辑Petri网的业务流程分析方法,属于模糊逻辑Petri网业务流程分析领域,包括如下步骤:首先提出模糊逻辑Petri网理论;其次对商家处理订单问题进行建模;再次根据可达图生成算法,做出基于模糊逻辑Petri网的订单处理模型的可达标识图;最后通过前向推理算法,推理得出基于模糊逻辑Petri网的订单处理模型每一步决策的可信度,得出商家为订单发货的可能性,进而得出商家处理订单的最优决策,达到过程优化的目标。本发明模糊逻辑Petri网不仅可以进行模糊推理,还具备批处理和传值不确定性特点,在建模过程中用托肯与命题相对应,使Petri网具备更强的表现力,简化了模型的复杂性。权利要求书5页说明书12页附图1页CN110033125A2019.07.19CN110033125A1.一种基于模糊逻辑Petri网的业务流程分析方法,其特征在于:包括以下步骤:步骤1:提出模糊逻辑Petri网理论,给出相关形式化定义、图形化表示、动态性质;步骤2:利用模糊逻辑Petri网理论,对商家处理订单的流程进行建模;步骤3:根据可达图生成算法,做出基于模糊逻辑Petri网的订单处理模型的可达标识图;步骤4:通过前向推理算法,推理得出基于模糊逻辑Petri网的订单处理模型的每一步决策的可信度,得出商家为订单发货的可能性,进而得出商家处理订单的最优决策。2.根据权利要求1所述的基于模糊逻辑Petri网的业务流程分析方法,其特征在于:在步骤1中,模糊逻辑Petri网理论如下:定义6 模糊逻辑Petri网一个模糊逻辑Petri网FLPN为一个十一元组∑=(P,T;F,I,O,D,ɑ,λ,C,W,M),其中(1)P={P1,P2,...,Pn}是有限个库所的集合;(2)F=(P×T)∪(T×P)包含了输入函数和输出函数,也称流关系;(3)T={TC∪TI∪To},其中:①T表示普通的变迁集合,TC={t1∪t2∪...∪tn},t1,t2...tn代表普通变迁;②TI表示T的逻辑输入变迁集,且的所有输入库所受一个逻辑输入表达式fI的限制;③pi1表示模糊逻辑变迁Ti的后集库所中序号较小的库所,pi2则表示另一个库所即变迁Ti后集库所中序号较大的库所;④TO表示T的逻辑输出变迁集,且tOi的每个输出库所受一个逻辑输出表达式fO的限制;TI={tI1∪tI2∪...∪tIn}表示逻辑输入变迁;TO={tO1∪tO2∪...∪tOn}表示逻辑输入变迁;(4)库所pi中包含着j个托肯,每个托肯与命题集合中的一个命题相对应;命题集合di中包含着j个命题;(5)ɑ(pi)=di,ɑ表示库所与命题集合之间的映射,即库所pi与命题集合di对应;(6)C表示命题的置信度集合,C={c1(pi),c2(pi)...cn(pi)},cj(pi)表示库所pi中第j个托肯所对应的命题的置信度,且cj(pi)→(0,1];(7)I为逻辑限制输入函数,使对I(tIi)=fI是一个逻辑输入表达式;(8)O为逻辑限制输出函数,使对O(toi)=fO是一个逻辑输出表达式集合,fO={fO1∪fO2∪...∪fOn}表示n个逻辑输出表达式;对fO1,fO2...fOn表示逻辑输出变迁集合To到库所集合P的映射;(9)λ:TI,To→(0,1]为变迁到阈值范围的映射,λi={λi1,λi2,...λin}表示模糊逻辑变迁TI的阈值,λi→(0,1];(10)W表示库所中托肯的权值,W={w1(pi),w2(pi)...wn(pi)},wj(pi)表示库所pi中第j个托肯表示的属性对变迁发生的影响程度,wj(pi)→[0,1];定义7 模糊逻辑变迁集T在模糊逻辑Petri网FLPN中,T={TC∪TI∪To},其中,权 利 要 求 书1/5页2CN110033125A2(1)TC表示普通的变迁集合,TC={t1∪t2∪...∪tn},t1,t2...tn代表普通变迁;(2)TI表示T的逻辑输入变迁集,且的所有输入库所受一个逻辑输入表达式fI的限制;(3)pi1表示模糊逻辑变迁Ti的后集库所中序号较小的库所,pi2则表示另一个库所即变迁Ti后集库所中序号较大的库所;(4)TO表示T的逻辑输出变迁集,且tOi的每个输出库所受一个逻辑输出表达式fO的限制;TI={tI1∪tI2∪...∪tIn}表示逻辑输入变迁;TO={tO1∪tO2∪...∪tOn}表示逻辑输入变迁;定义8 逻辑函数I和O在模糊逻辑Petri网FLPN中,逻辑函数的定义如下:(1)I为逻辑限制输入函数,对I(tIi)=fI是一个逻辑输入表达式;(2)O为逻辑限制输出函数,对O(toi)=fO是一个逻辑输出表达式集合,fO={fO1∪fO2∪...∪fOn}表示n个逻辑输出表达式;对fO1,fO2...fOn表示逻辑输出变迁集合To到库所集合P的映射;定义9 阈值函数λ在模糊逻辑Petri网FLPN中,λ:TI,To→(0,1]为变迁到阈值范围的映射,λi={λi1,λi2,...λin}表示模糊逻辑变迁TI的阈值,λi→(0,1];定义10 命题集合D(1)在模糊逻辑Petri网FLPN中,D表示所有命题的集合,D={d1∪d2∪...∪dn}表示命题集合的有限并集,d1,d2...dn表示n个命题集合;定义11 命题的置信度集合CC表示命题的置信度集合,C={c1(pi),c2(pi)...cn(pi)},cj(pi)表示库所pi中第j个托肯所对应的命题的置信度,且cj(pi)→(0,1];定义12 FLPN中的权值集合W在模糊逻辑Petri网FLPN中,W表示库所中托肯的权值,W={w1(pi),w2(pi)...wn(pi)},wj(pi)表示库所pi中第j个托肯表示的属性对变迁发生的影响程度,wj(pi)→[0,1];定义13 记录变迁集合ToldTold表示已经发生过的变迁集合,初始状态下Told为空集;变迁TI或者To发生后,Told=Told+{TI/To}Told集合既能够防止模糊逻辑变迁的重复发生,又能够记录由FLPN建模的系统的推理过程,变迁TI/To发生后,其前集库所中的托肯不发生变化;定义14 置信度计算规则(1)P∈·tIi,且pi满足tIi上的模糊逻辑变迁表达式fI;那么变迁tIi具有发生权,变迁tIi发生后,后集库所pi1中产生新的托肯,库所pi1中每个新的托肯对应命题的置信度为前集库所pi中托肯的对应命题的可信度与其对应权值的乘积之和:ci(pi1)=c1(pi)*w11+c2(pi)*w12+...+cn(pi)*w1n;(2)P∈·tIi,且pj不满足tIi上的模糊逻辑变迁表达式fI,那么变迁tIi具有发生权 利 要 求 书2/5页3CN110033125A3权,变迁tIi发生后,后集库所pi2中产生新的托肯,库所pi2中每个新的托肯对应命题的置信度为前集库所pj中托肯的对应命题的可信度与其对应权值的乘积之和,即cj(pi2)=c1(pj)*w11+c2(pj)*w12+...+cn(pj)*w1n;定义15 模糊逻辑Petri网的输入变迁引发规则在模糊逻辑Petri网FLPN中,模糊逻辑输入变迁发生规则是多对二的推理模式:(1)模糊逻辑输入变迁引发规则模式对TI={T1,T2...,Tn},I(tIi)=fI;模糊逻辑变迁表达式fI由命题集合的可信度c(pi)、权值w(pi)和阈值λi组成;模糊逻辑输入变迁的引发规则:在状态标识M下,对于变迁tIi∈TI且如果则认为变迁tIi在标识M有发生权,即M[tIi;(2)如果M[tIi,在标识M下,满足模糊逻辑变迁表达式fI,变迁tIi能够发生;变迁tIi发生后,状态标识M到达一个新的状态M′,对(3)在标识M下,且M(pj)0,pj∈·tIi不满足模糊逻辑变迁表达式fI,变迁tIi能够发生,从状态标识M发生变迁tIi达到一个新的状态M′,对(4)在状态标识M下,且M(pj)0,pj∈·tIi不满足模糊逻辑变迁表达式fI,|PN|=n;pk∈·tIi满足模糊逻辑变迁表达式fI,|PY|=m,变迁tIi能够发生,那么在新的状态标识M′下,托肯的个数M′(p)的变化如下:定义16 模糊逻辑Petri网的输出变迁引发规则在模糊逻辑Petri网FLPN中,模糊逻辑变迁的输出模式是一对多的推理模式;TO={tO1,tO2...tOm};M(p)0且则逻辑输出变迁tOi能够发生;若变迁tOi使能,则它能够引发演变到新的标识M′;权 利 要 求 书3/5页4CN110033125A4(1)标识M′下标识个数的变化:(2)P={p1,p2...pn},在M′满足逻辑输出变迁表达式fO1,fO2,...fOn,fO1,fO2,...fOn是由库所中的托肯以及托肯所对应命题的的置信度组成;(3)模糊逻辑变迁tOi发生后,系统到达新的状态标识M′,在新的状态标识M′下,后集库所中托肯的个数M′(p)以及属性满足其弧上的变迁表达式fO1,fO2,...fOn,并且后集库所中托肯对应命题的置信度不发生变化。3.根据权利要求1所述的基于模糊逻辑Petri网的业务流程分析方法,其特征在于:在步骤2中,商家处理订单的流程具体包括如下步骤:输入:∑=(P,T;F,I,O,D,ɑ,λ,C,W,M);步骤1:确定系统的初始状态:客户A和客户B同时提交订单;命题集合包含客户提交订单号、客户交易成功、客户按时归还贷款、库存量满足订单商品要求、商品是畅销款、商品生产日期符合要求、订单商品的合格率以及运输商品的费用;步骤2:检查客户的信誉度,若客户交易成功或者客户按时归还贷款的可信度符合标准,则转到步骤3;步骤3:检查订单,若订单商品的合格率以及生产日期达到标准,则转到步骤4;若不满足,则转到步骤7;步骤4:验货,检查库存是否满足订单的数量,核查订单商品是否为热销款;若检查合格,则转入步骤5;步骤5:商家进行成本核算,若满足盈利要求,则变迁发生,然后转到步骤6;若不满足,则转到步骤7;步骤6:得出商家为订单发货的概率,准备发货;步骤7:得出商家为订单发货的概率,取消订单;输出:商家对订单的处理结果。4.根据权利要求1所述的基于模糊逻辑Petri网的业务流程分析方法,其特征在于:在步骤3中,其中,可达标识图的具体定义如下:定义17 模糊逻辑Petri网的可达标识图设∑=FLPN(P,T;F,I,O,D,ɑ,λ,C,W,M)为一个有界Petri网,则∑的可达标志图定义为一个三元组RG(∑)=(R(M0),E,P);其中:E={(Mi,Mj)|Mi,Mj∈R(M0),P:E→T,P(Mi.Mj)=ti;当且仅当Mi[tiMj,R(M0)为RG(∑)的弧集;若p(Mi,Mj)=ti,则ti为弧(Mi,Mj)的旁标;定义18 可达图生成算法输入:FLPN=(P,T;F,I,O,D,ɑ,λ,C,W,M);输出:FLPN的可达图RG(FLPN);Step 0:M0作为可达图RG(FLPN)的根节点,并标之以“新”;Step 1:如果存在标注为“新”的节点,则任选一个标注为“新”节点,并标记为M,令集合Told=φ;权 利 要 求 书4/5页5CN110033125A5Step 2:如果从Mo到M的有向路上有一个节点的标识等于M,则将M的标注改为“旧”,返回Step 1;Step 3:如果则将M的标注
本文标题:【CN110033125A】一种基于模糊逻辑Petri网的业务流程分析方法【专利】
链接地址:https://www.777doc.com/doc-7451009 .html