您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 参数parameter与统计量statistic
参数parameter与统计量statistic•描述总体特征的数量称为参数。如总体均数、总体标准差。•描述样本特征的数量称为统计量。如样本均数、样本标准差。随机变量及其分布•设e是随机试验,其样本空间为Ω={e},如果对于Ω内的每一个e,都有一个实数X(e)与之对应,则称X(e)为随机变量(randomvariable),简记为X。•设随机变量X的所有可能取值为xi(i=1,2,…,),取相应值的概率为P{X=xi}=Pi,则Pi为离散型的随机变量的概率函数或分布率。随机变量的常见分布•二项分布Binomialdistribution•泊松分布Poissondistribution•正态分布Normaldistribution•t分布•Х2分布•F分布离散型连续型概率分布统计量分布正态分布Normaldistribution•又称Gauss分布,是分布所应遵循的自然模式。xeXfx,21)(222)(X为连续随机变量,μ为X值的总体均数,σ2为总体方差标准正态分布及分布估计方法为应用的方便,任何正态分布的X通过μ值转换后,称为标准化的正态分布,即μ~N(μ=0,σ2=1)。Xuμ值为标准化变量值00.020.040.060.080.10.120.1412.0014.5017.0019.5022.0024.5027.0029.5032.003,0.231023-1-2-3xXu累积分布函数dxeXFXX22)(2121)(00.020.040.060.080.10.120.1412.0014.5017.0019.5022.0024.5027.0029.5032.00f(X)ab0013.0)3(u9987.0)3(1)3(uu()1()uu标准正态分布表6826.01587.01587.01)1()1(uu同理:u=(-2.58,2.58)区间的面积为0.99(1.96)(1.96)0.9750.0250.95uu例3-1:标准正态变量值u=(-1,1)和u=(-1.96,1.96)区间内的面积(比例)各为多少?0.05/2=1.96(双侧)0.01/2=2.58(双侧)0.05=1.64(单侧)0.01=2.33(单侧)u统计中常用尾部面积的u值,记为界值。•例3-2:假设已知95%的变量值分布的范围值为多少?20,10095.0)96.1,96.1(21xx2.139,8.60)2096.1100,2096.1100(2121xxxx95%的变量值分布在60.8-139.2范围内正态分布的应用•1.估计正态分布X值在特定值范围内的分布比例。•2.利用估计变量值的范围或对极端值做取舍。•3.许多统计方法的统计推断建立在正态分布基础上。SX3
本文标题:参数parameter与统计量statistic
链接地址:https://www.777doc.com/doc-7490789 .html