您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 人教版七年级下数学第5章相交线与平行线单元测试卷含答案
第5章相交线与平行线期末考好题精选训练一、选择题1.(2016年•恩施市期末)下列推理中,错误的是()A.∵AB=CD,CD=EF,∴AB=EFB.∵∠α=∠β,∠β=∠γ,∴∠α=∠γC.∵a∥b,b∥c,∴a∥cD.∵AB⊥EF,EF⊥CD,∴AB⊥CD2.(2016年•海珠区期末)如图,直线l1∥l2,则下列式子成立的是()A.∠1+∠2+∠3=180°B.∠1﹣∠2+∠3=180°C.∠2+∠3﹣∠1=180°D.∠1+∠2﹣∠3=180°3.(2016年•绍兴期末)如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有()A.6个B.5个C.4个D.3个4.(2016年•宜兴市期末)给出下列5个命题:①相等的角是对顶角;②互补的两个角中一定是一个为锐角,另一个为钝角;③平行于同一条直线的两条直线平行;④同旁内角的平分线互相垂直.其中真命题的个数为()A.1B.2C.3D.45.(2016年•潮南区期末)以下五个条件中,能得到互相垂直关系的有()①对顶角的平分线;②邻补角的平分线;③平行线截得的一组同位角的平分线;④平行线截得的一组内错角的平分线;⑤平行线截得的一组同旁内角的平分线.A.1个B.2个C.3个D.4个6.(2016年•湘潭期末)如图,直线AB、CD、EF相交于O,则∠1+∠2+∠3的度数等于()A.90°B.150°C.180°D.210°7.(2015年•萧山区期末)如图,直线a∥b∥c,直角∠BAC的顶点A在直线b上,两边分别于直线a、c相交于点B、C,则∠1+∠2的度数是()A.180°B.210°C.270°D.360°8.(2015年•萧山区期末)如图,下列说法错误的是()A.∠A与∠EDC是同位角B.∠A与∠ABF是内错角C.∠A与∠ADC是同旁内角D.∠A与∠C是同旁内角9.(2015年•和平区期末)点P,Q都是直线l外的点,下列说法正确的是()A.连接PQ,则PQ一定与直线l垂直B.连接PQ,则PQ一定与直线l平行C.连接PQ,则PQ一定与直线l相交D.过点P只能画一条直线与直线l平行二、填空题10.(2016年•相城区期末)好久未见的A,B,C,D,E五位同学欢聚一堂,他们相互握手一次,中途统计各位同学握手次数为:A同学握手4次,B同学握手3次,C同学握手2次,D同学握手1次,那么此时E同学握手次.11.(2016年•宜兴市期末)如图①,在长方形ABCD中,E点在AD上,并且∠ABE=30°,分别以BE、CE为折痕进行折叠并压平,如图②,若图②中∠AED=n°,则∠BCE的度数为°(用含n的代数式表示).12.(2015年•西城区期末)平移变换不仅与几何图形有着密切的联系,而且在一些特殊结构的汉字中,也有平移变换的现象,如:“日”,“朋”,“森”等,请你开动脑筋,再写出两个具有平移变换现象的汉字.13.(2016年•潮南区期末)如图,直线l1∥l2,∠A=125°,∠B=105°,则∠1+∠2=°.14.(2015年•胶州市期末)如图,一条公路修到湖边时,经过三次拐弯后,道路恰好与第一次拐弯之前的道路保持平行,如果第一次拐弯的角∠A=120°,第二次拐弯的角∠B=150°,则第三次拐弯的角∠C的度数等于.15.(2015年•海珠区期末)探照灯、汽车灯等很多灯具都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是.16.(2012•金华模拟)如图是一台起重机的工作简图,前后两次吊杆位置OP1、OP2与线绳的夹角分别是30°和70°,则吊杆前后两次的夹角∠P1OP2=°.17.(2015年•下城区期末)已知D是△ABC的边BC所在直线上的一点,与B,C不重合,过D分别作DF∥AC交AB所在直线于F,DE∥AB交AC所在直线于E.若∠B+∠C=110°,则∠FDE的度数是.18.(2015年•武昌区期末)如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=.三、解答题19.(2016年•海珠区期末)如图1,在△ABC中,请用平行线的性质证明∠A+∠B+∠C=180°.20.(2016年•石景山区期末)小明同学在做作业时,遇到这样一道几何题:已知:如图1,l1∥l2∥l3,点A、M、B分别在直线l1,l2,l3上,MC平分∠AMB,∠1=28°,∠2=70°.求:∠CMD的度数.小明想了许久没有思路,就去请教好朋友小坚,小坚给了他如图2所示的提示:请问小坚的提示中①是∠,④是∠.理由②是:;理由③是:;∠CMD的度数是°.21.(2015年•高新区期末)已知:直线AB∥CD,点M,N分别在直线AB,CD上,点E为平面内一点.(1)如图1,∠BME,∠E,∠END的数量关系为;(直接写出答案)(2)如图2,∠BME=m°,EF平分∠MEN,NP平分∠END,EQ∥NP,求∠FEQ的度数.(用含m的式子表示)(3)如图3点G为CD上一点,∠BMN=n•∠EMN,∠GEK=n•∠GEM,EH∥MN交AB于点H,探究∠GEK,∠BMN,∠GEH之间的数量关系(用含n的式子表示)22.(2015年•苏州期末)如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(1)填空:∠OBC+∠ODC=;(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:(3)如图2:若BF、DG分别平分∠OBC、∠ODC的外角,判断BF与DG的位置关系,并说明理由.23.(2015年•武汉校级期末)直线EF、GH之间有一个直角三角形ABC,其中∠BAC=90°,∠ABC=α.(1)如图1,点A在直线EF上,B、C在直线GH上,若∠α=60°,∠FAC=30°.求证:EF∥GH;(2)将三角形ABC如图2放置,直线EF∥GH,点C、B分别在直线EF、GH上,且BC平分∠ABH,直线CD平分∠FCA交直线GH于D.在α取不同数值时,∠BCD的大小是否发生变化?若不变求其值,若变化指出其变化范围.24.(2015年•朝阳区期末)补全解答过程:已知:如图,直线AB、CD相交于点O,OA平分∠EOC,若∠EOC:∠EOD=2:3,求∠BOD的度数.解:由题意∠EOC:∠EOD=2:3,设∠EOC=2x°,则∠EOD=3x°.∵∠EOC+∠=180°(),∴2x+3x=180.x=36.∴∠EOC=72°.∵OA平分∠EOC(已知),∴∠AOC=∠EOC=36°.∵∠BOD=∠AOC(),∴∠BOD=(等量代换)25.(2016年•昌平区期末)阅读理解,解决问题:同学们玩游戏,借助两个三角形模板画平行线.规则1:摆放一副三角板,画平行线.小颖是这样做的:如图1,先画一条直线MN,之后摆放三角板,得到AB∥CD.依据是.小静如图2摆放三角板,也得到AB∥CD.依据是.规则2:请你利用图3中所示的两个三角形模板摆放后画平行线.在图4中画出你摆放的两个三角形模板的位置.26.(2015年•武昌区期末)一个长方形台球桌面ABCD(AB∥CD,AD∥BC,∠A=90)如图1所示,已知台球在与台球桌边沿碰撞的过程中,撞击线路与桌边的夹角等于反射线路与桌边的夹角,如∠1=∠2(1)台球经过如图2的两次反弹后,撞击线路EF,第二次反弹线路GH,求证:EF∥GH;(2)台球经过如图3所示的两次反弹后,撞击线路EF和第二次反弹线路GH是否仍然平行,给出你的结论并说明理由.参考答案一、选择题1.解:A、由等量代换,故A选项正确B、由等量代换,故B选项正确;C、如果两条直线都与第三条直线平行,那么这两条直线也平行,属于平行公理的推论,故C选项正确;D、∵AB⊥EF,EF⊥CD,∴AB∥CD,故D选项错误.故选:D.2.解:因为l1∥l2,所以∠1=(180°﹣∠2)+∠3,可得:∠1+∠2﹣∠3=180°,故选D3.解:如图,∵EG∥DB,∴∠1=∠2,∠1=∠3,∵AB∥EF∥DC,∴∠2=∠4,∠3=∠5=∠6,∴与∠1相等的角有∠2、∠3、∠4、∠5、∠6共5个.故选:B.4.解:①错误,相等的角不一定是对顶角.②错误,两个角可能都是90°.③正确.④错误,同旁内角的平分线不一定互相垂直.正确的是③.故选A.5.解:①对顶角的平分线是一条直线,故本选项错误;②邻补角的平分线互相垂直,故本选项正确;③平行线截得的一组同位角的平分线互相平行,故本选项错误;④平行线截得的一组内错角的平分线互相平行,故本选项错误;⑤平行线截得的一组同旁内角的平分线互相垂直,故本选项正确.故选B.6.解:如图,∠4=∠1,∵∠2+∠3+∠4=180°,∴∠1+∠2+∠3=180°.故选C.7.解:如图,∵a∥b,∴∠2+∠3=180°,则∠3=180°﹣∠2,∵b∥c,∴∠1+∠4=180°,则∠4=180°﹣∠1,∵∠BAC=90°,∴∠3+∠4=90°,∴180°﹣∠2+180°﹣∠1=90°,∴∠1+∠2=270°,故选C.8.解:∠A与∠EDC是同位角,A正确;∠A与∠ABF是内错角,B正确;∠A与∠ADC是同旁内角,C正确;∠A与∠C不是同旁内角,D不正确.故选:D.9.解:PQ与直线l可能平行,也可能相交,故A、B、C,均错误;过直线外一点有且只有一条直线与已知直线平行,故D正确.故选:D.二、填空题10.解:∵共有5个人,A同学握手4次,则A与B、C、D、E每人握手一次,∴B、C握手一定不是与D握手,∵B握手3次,D握手1次,∴B握手3次一定是与A、C、E的握手;∵C握手2次,是与A和B握手.∴E一共握手2次,是与A和B握手.故答案为:2.11.解:根据题意得:∵BE=2AE=2A′E,∠A=∠A′=90°,∴△ABE、△A′BE都为30°、60°、90°的三角形,∴∠1=∠AEB=60°,∴∠AED′=180°﹣∠1﹣∠AEB=180°﹣60°﹣60°=60°,∴∠DED′=∠AED+∠AED′=n°+60°=(n+60)°,∴∠2=∠DED′=(n+30)°,∵A′D′∥BC,∴∠BCE=∠2=(n+30)°.故答案为:(n+30).12.解:根据题意,由两或三个完全相同的部分组成的汉子即可:则可以有:羽,圭,品,晶等,答案不唯一.故答案为:羽,圭,品,晶等,答案不唯一.13.解:连结CD,如图,∵四边形ABCD的内角和为360°,∴∠3+∠4=360°﹣125°﹣105°=130°,∵l1∥l2,∴∠1+∠2+∠3+∠4=180°,∴∠1+∠2=180°﹣130°=50°.故答案为50.14.解:延长FC,AB,交于点E,如图所示,∵AD∥CE,∴∠A=∠E=120°,∵∠ABC=150°,∴∠CBE=30°,∴∠BCF=∠CBE+∠B=30°+120°=150°.故答案为:150°.15.解:过O作直线EF∥AB,则EF∥CD,∵AB∥EF,∴∠1=∠ABO=α.∵EF∥CD,∴∠2=∠DCO=β﹣α.故答案为:β﹣α.16.解:根据题意得:P1A∥P2B,∠1=30°,∠2=70°,∴∠3=∠2=70°,∵∠3=∠1+∠P1OP2,∴∠P1OP2=∠3﹣∠1=70°﹣30°=40°.故答案为:40.17.解:如图:分为三种情况:第一种情况:如图①,∵∠B+∠C=110°,∴∠A=180°﹣(∠B+∠C)=70°,∵DE∥AB,DF∥AC,∴∠A=∠DFB,∠FDE=∠DFB,∴∠FDE=∠A=70°;第二种情况:如图②,∵∠B+∠ACB=110°,∴∠BAC=180°﹣(∠B+∠ACB)=70°,∵DE∥AB,DF∥AC,∴∠BAC=∠E=70°,∠FDE+∠E=180°,∴∠FDE=110°;第三种情况:如图③,∵∠ABC+∠C=110°,∴∠BAC=180°﹣(∠ABC+∠C)=70°,∵DE∥AB,DF∥AC,∴∠BAC=∠E=70°,∠FDE+∠E=18
本文标题:人教版七年级下数学第5章相交线与平行线单元测试卷含答案
链接地址:https://www.777doc.com/doc-7496589 .html