您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 澄迈县2017-2018学年九年级上第一次月考数学试卷含答案解析
2017-2018学年海南省澄迈县九年级(上)第一次月考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)抛物线y=2(x+3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)2.(3分)抛物线y=﹣x2+4x﹣4的对称轴是()A.x=﹣2B.x=2C.x=4D.x=﹣43.(3分)抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=3(x﹣1)2﹣2B.y=3(x+1)2﹣2C.y=3(x+1)2+2D.y=3(x﹣1)2+24.(3分)二次函数y=ax2+bx+c对于x的任何值都恒为负值的条件是()A.a>0,△>0B.a>0,△<0C.a<0,△>0D.a<0,△<05.(3分)如图,若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是()A.B.C.D.6.(3分)二次函数与y=kx2﹣8x+8的图象与x轴有交点,则k的取值范围是()A.k<2B.k<2且k≠0C.k≤2D.k≤2且k≠07.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.8.(3分)如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠B=60°,则CD的长为()A.0.5B.1.5C.D.19.(3分)如图,把菱形ABOC绕点O顺时针旋转得到菱形DFOE,则下列角中不是旋转角的为()A.∠BOFB.∠AODC.∠COED.∠COF10.(3分)已知抛物线和直线l在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=﹣1,P1(x1,y1)、P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线l上的点,且﹣1<x1<x2,x3<﹣1,则y1、y2、y3的大小关系为()A.y1<y2<y3B.y3<y1<y2C.y3<y2<y1D.y2<y1<y311.(3分)如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD、BC于点E、F,下面的结论:①点E和点F,点B和点D是关于中心O对称点;②直线BD必经过点O;③四边形DEOC与四边形BFOA的面积必相等;④△AOE与△COF成中心对称.其中正确的个数为()A.1B.2C.3D.412.(3分)在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点AB.点BC.点CD.点D13.(3分)如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是()A.4+mB.mC.2m﹣8D.8﹣2m14.(3分)把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6B.y=﹣2(x﹣1)2﹣6C.y=﹣2(x+1)2+6D.y=﹣2(x+1)2﹣6二、填空题(本大题共6小题,每小题5分,共30分).15.(5分)抛物线y=2(x﹣3)2+3的顶点在象限.16.(5分)在平面直角坐标系中,将点A(4,2)绕原点逆时针方向旋转90°后,其对应点A′的坐标为.17.(5分)如图,把边长为4的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于.18.(5分)请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式.19.(5分)函数y=(x﹣1)2+3,当x时,函数值y随x的增大而增大.20.(5分)函数y=(x+3)2﹣2的图象可由函数y=x2的图象向平移3个单位,再向平移2个单位得到.三、解答题(共48分)21.(12分)在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.22.(12分)已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.23.(10分)某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形.其中,抽屉底面周长为180cm,高为20cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计).24.(14分)已知二次函数y=ax2﹣4x+c的图象与坐标轴交于点A(﹣1,0)和点B(0,﹣5).(1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标及△ABP的周长.四、附加题25.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.2017-2018学年海南省澄迈县九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)抛物线y=2(x+3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)【分析】已知抛物线的顶点式,可直接写出顶点坐标.【解答】解:由y=3(x+3)2+1,根据顶点式的坐标特点可知,顶点坐标为(﹣3,1),故选C.【点评】考查二次函数的性质及将解析式化为顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.2.(3分)抛物线y=﹣x2+4x﹣4的对称轴是()A.x=﹣2B.x=2C.x=4D.x=﹣4【分析】先根据抛物线的解析式得出a、b的值,再根据二次函数的对称轴方程即可得出结论.【解答】解:∵抛物线的解析式为y=﹣x2+4x﹣4,∴a=﹣1,b=4,∴其对称轴是直线x=﹣=﹣=2.故选B.【点评】本题考查的是二次函数的性质,即二次函数y=ax2+bx+c(a≠0)的对称轴直线x=﹣.3.(3分)抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=3(x﹣1)2﹣2B.y=3(x+1)2﹣2C.y=3(x+1)2+2D.y=3(x﹣1)2+2【分析】根据图象向下平移减,向右平移减,可得答案.【解答】解:抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x﹣1)2﹣2,故选:A.【点评】本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.4.(3分)二次函数y=ax2+bx+c对于x的任何值都恒为负值的条件是()A.a>0,△>0B.a>0,△<0C.a<0,△>0D.a<0,△<0【分析】函数值恒为负值要具备两个条件:①开口向下:a<0,②与x轴无交点,即△<0.【解答】解:如图所示,二次函数y=ax2+bx+c对于x的任何值都恒为负值的条件是:a<0,△<0;故选D.【点评】本题考查了抛物线的性质,二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象与x轴交点的个数由△=b2﹣4ac决定;①△=b2﹣4ac>0时,抛物线与x轴有2个交点;②△=b2﹣4ac=0时,抛物线与x轴有1个交点;③△=b2﹣4ac<0时,抛物线与x轴没有交点.抛物线的开口方向由a决定,当a>0时,开口向上,当a<0时,开口向下.5.(3分)如图,若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是()A.B.C.D.【分析】根据一次函数的性质判断出a、b的正负情况,再根据二次函数的性质判断出开口方向与对称轴,然后选择即可.【解答】解:∵y=ax+b的图象经过二、三、四象限,∴a<0,b<0,∴抛物线开口方向向下,∵抛物线对称轴为直线x=﹣<0,∴对称轴在y轴的左边,纵观各选项,只有C选项符合.故选C.【点评】本题考查了二次函数的图象,一次函数的图象与系数的关系,主要利用了二次函数的开口方向与对称轴,确定出a、b的正负情况是解题的关键.6.(3分)二次函数与y=kx2﹣8x+8的图象与x轴有交点,则k的取值范围是()A.k<2B.k<2且k≠0C.k≤2D.k≤2且k≠0【分析】直接利用△=b2﹣4ac≥0,进而求出k的取值范围.【解答】解:∵二次函数与y=kx2﹣8x+8的图象与x轴有交点,∴△=b2﹣4ac=64﹣32k≥0,k≠0,解得:k≤2且k≠0.故选:D.【点评】此题主要考查了抛物线与x轴的交点,正确得出△的符号是解题关键.7.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.(3分)如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠B=60°,则CD的长为()A.0.5B.1.5C.D.1【分析】解直角三角形求出AB,再求出CD,然后根据旋转的性质可得AB=AD,然后判断出△ABD是等边三角形,根据等边三角形的三条边都相等可得BD=AB,然后根据CD=BC﹣BD计算即可得解.【解答】解:∵∠B=60°,∴∠C=90°﹣60°=30°,∵AC=,∴AB=AC•tan30°=×=1,∴BC=2AB=2,由旋转的性质得,AB=AD,∴△ABD是等边三角形,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1.故选:D.【点评】本题考查了旋转的性质,等边三角形的判定与性质,解直角三角形,熟记性质并判断出△ABD是等边三角形是解题的关键.9.(3分)如图,把菱形ABOC绕点O顺时针旋转得到菱形DFOE,则下列角中不是旋转角的为()A.∠BOFB.∠AODC.∠COED.∠COF【分析】两对应边所组成的角都可以作为旋转角,结合图形即可得出答案.【解答】解:OB旋转后的对应边为OF,故∠BOF可以作为旋转角,故本选项错误;B、OA旋转后的对应边为OD,故∠AOD可以作为旋转角,故本选项错误;C、OC旋转后的对应边为OE,故∠COE可以作为旋转角,故本选项错误;D、OC旋转后的对应边为OE不是OF,故∠COF不可以作为旋转角,故本选项正确;故选D.【点评】此题考查了旋转的性质,属于基础题,解答本题的关键是掌握两对应边所组成的角都可以作为旋转角,难度一般.10.(3分)已知抛物线和直线l在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=﹣1,P1(x1,y1)、P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线l上的点,且﹣1<x1<x2,x3<﹣1,则y1、y2、y3的大小关系为()A.y1<y2<y3B.y3<y1<y2C.y3<y2<y1D.y2<y1<y3【分析】因为抛物线的对称轴为直线x=﹣1,且﹣1<x1<x2,当x>﹣1时,由图象知,y随x的增大而减小,根据图象的单调性可判断y2<y1;结合x3<﹣1,即可判断y2<y1<y3.【解答】解:对称轴为直线x=﹣1,且﹣1<x1<x2,当x>﹣1时,y2<y1,又因为x3<﹣1,由一次函数的图象可知,此时点P3(x3,y3)在二次函数图象上方,所以y2<y1<y3.故选D.【点评】本题考查了一次函数、二次函数概念图象及性质,需要灵活
本文标题:澄迈县2017-2018学年九年级上第一次月考数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7500401 .html