您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 《余弦定理、正弦定理》平面向量及其应用PPT(第课时正弦定理)
6.4.3余弦定理、正弦定理第2课时正弦定理考点学习目标核心素养正弦定理通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法逻辑推理第六章平面向量及其应用栏目导引应用案巩固提升测评案达标反馈探究案讲练互动预习案自主学习第六章平面向量及其应用PPT模板:素材:背景:图表:下载:教程:资料下载:个人简历:试卷下载:教案下载:手抄报:课件:语文课件:数学课件:英语课件:美术课件:科学课件:物理课件:化学课件:生物课件:地理课件:历史课件:问题导学预习教材P45-P48的内容,思考以下问题:1.在直角三角形中,边与角之间的关系是什么?2.正弦定理的内容是什么?栏目导引应用案巩固提升测评案达标反馈探究案讲练互动预习案自主学习第六章平面向量及其应用PPT模板:素材:背景:图表:下载:教程:资料下载:个人简历:试卷下载:教案下载:手抄报:课件:语文课件:数学课件:英语课件:美术课件:科学课件:物理课件:化学课件:生物课件:地理课件:历史课件:.正弦定理条件在△ABC中,角A,B,C所对的边分别为a,b,c结论________=bsinB=________文字叙述在一个三角形中,各边和它所对角的________的比相等asinAcsinC正弦栏目导引应用案巩固提升测评案达标反馈探究案讲练互动预习案自主学习第六章平面向量及其应用PPT模板:素材:背景:图表:下载:教程:资料下载:个人简历:试卷下载:教案下载:手抄报:课件:语文课件:数学课件:英语课件:美术课件:科学课件:物理课件:化学课件:生物课件:地理课件:历史课件:■名师点拨对正弦定理的理解(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.(3)揭示规律:正弦定理指出的是三角形中三条边与其对应角的正弦之间的一个关系式,它描述了三角形中边与角的一种数量关系.栏目导引应用案巩固提升测评案达标反馈探究案讲练互动预习案自主学习第六章平面向量及其应用PPT模板:素材:背景:图表:下载:教程:资料下载:个人简历:试卷下载:教案下载:手抄报:课件:语文课件:数学课件:英语课件:美术课件:科学课件:物理课件:化学课件:生物课件:地理课件:历史课件:.正弦定理的变形若R为△ABC外接圆的半径,则(1)a=2RsinA,b=2RsinB,c=2RsinC;(2)sinA=a2R,sinB=b2R,sinC=c2R;(3)sinA∶sinB∶sinC=a∶b∶c;(4)a+b+csinA+sinB+sinC=2R.栏目导引应用案巩固提升测评案达标反馈探究案讲练互动预习案自主学习第六章平面向量及其应用PPT模板:素材:背景:图表:下载:教程:资料下载:个人简历:试卷下载:教案下载:手抄报:课件:语文课件:数学课件:英语课件:美术课件:科学课件:物理课件:化学课件:生物课件:地理课件:历史课件:判断(正确的打“√”,错误的打“×”)(1)正弦定理不适用于直角三角形.()(2)在△ABC中必有asinA=bsinB.()(3)在△ABC中,若a>b,则必有sinAsinB.()(4)在△ABC中,若sinA=sinB,则必有A=B.()××√√栏目导引应用案巩固提升测评案达标反馈探究案讲练互动预习案自主学习第六章平面向量及其应用PPT模板:素材:背景:图表:下载:教程:资料下载:个人简历:试卷下载:教案下载:手抄报:课件:语文课件:数学课件:英语课件:美术课件:科学课件:物理课件:化学课件:生物课件:地理课件:历史课件:在△ABC中,a=3,b=5,sinA=13,则sinB=()A.15B.59C.53D.1解析:选B.因为a=3,b=5,sinA=13,所以由正弦定理得sinB=bsinAa=5×133=59.栏目导引应用案巩固提升测评案达标反馈探究案讲练互动预习案自主学习第六章平面向量及其应用PPT模板:素材:背景:图表:下载:教程:资料下载:个人简历:
本文标题:《余弦定理、正弦定理》平面向量及其应用PPT(第课时正弦定理)
链接地址:https://www.777doc.com/doc-7505573 .html