您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2020年安徽省中考数学总复习试卷解析版-
第1页,共19页中考数学总复习试卷题号一二三总分得分一、选择题(本大题共10小题,共40.0分)1.抛物线y=-2(x-3)2+5的顶点坐标是( )A.(3,-5)B.(-3,5)C.(3,5)D.(-3,-5)2.在Rt△ABC中,∠C=90°,sinA=,BC=6,则AB长是( )A.4B.6C.8D.103.将抛物线y=x2-2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为( )A.y=(x-1)2+4B.y=(x-4)2+4C.y=(x+2)2+6D.y=(x-4)2+64.关于反比例函数y=-,下列说法正确的是( )A.图象过(1,2)点B.图象在第一、三象限C.当x>0时,y随x的增大而减小D.当x<0时,y随x的增大而增大5.已知抛物线y=ax2+bx+c(a<0)过A(-2,0)、B(0,0)、C(-3,y1)、D(3,y2)四点,则y1与y2的大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.不能确定6.如图,△ABC中,D为BC中点,E为AD的中点,BE的延长线交AC于F,则为( )A.1:5B.1:4C.1:3D.1:27.一次函数y=ax+b和反比例函数y=在同一个平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是( )A.B.第2页,共19页C.D.8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c-m=0有两个不相等的实数根,下列结论:①b2-4ac<0;②abc>0;③a-b+c<0;④m>-2,其中,正确的个数有( )A.1B.2C.3D.49.如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为( )A.2B.C.D.110.如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为xs,△APQ的面积为ycm2,则下列图象中能大致表示y与x的函数关系的是( )A.B.C.D.第3页,共19页二、填空题(本大题共4小题,共20.0分)11.若,则=______.12.如图所示,点A是反比例函数y=(x<0)的图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,若△ABP的面积是2,则k=______.13.将一副三角尺如图所示叠放在一起,则的值是______.14.如图,平面直角坐标系中,矩形ABOC的边BO,CO分别在x轴,y轴上,A点的坐标为(-8,6),点P在矩形ABOC的内部,点E在BO边上,满足△PBE∽△CBO,当△APC是等腰三角形时,P点坐标为______.三、解答题(本大题共9小题,共90.0分)15.计算:.16.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,1),B(1,4),C(3,2).请解答下列问题:(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点的坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的右侧,画出△ABC放大后的第4页,共19页图形△A2B2C2,并直接写出C2点的坐标;(3)如果点D(a,b)在线段BC上,请直接写出经过(2)的变化后对应点D2的坐标.17.如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.18.如图,在锐角三角形ABC中,点D、E分别在边AC、AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=BE=4,AE=3,求CD的值.第5页,共19页19.为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)20.通过学习锐角三角比,我们知道在直角三角形中,一个锐角的大小与两条边长的比值是一一对应的,因此,两条边长的比值与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图(1)在△ABC中,AB=AC,底角B的邻对记作canB,这时canB=,容易知道一个角的大小与这个角的邻对值也是一一对应的.根据上述角的邻对的定义,解下列问题:(1)can30°=______;(2)如图(2),已知在△ABC中,AB=AC,canB=,S△ABC=24,求△ABC的周长.第6页,共19页21.如图,已知二次函数y=-x2+bx+c的图象经过A(-2,-1),B(0,7)两点.(1)求该抛物线的解析式及对称轴;(2)当x为何值时,y>0?(3)在x轴上方作平行于x轴的直线l,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作x轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.22.长丰县是国家无公害草莓生产示范基地,生产的草莓是安徽省特色水果,也是安黴省的特产之一.今年某水果销售店在草莓销售旺季,试销售成本为20元/kg的草莓,规定试销期间销售单价低于成本单价,也不高于40元/kg,经试销发现,销售量(kg)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数表达式;(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.第7页,共19页23.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.第8页,共19页答案和解析1.【答案】C【解析】解:∵抛物线的解析式为y=-2(x-3)2+5,∴抛物线的顶点坐标为(3,5).故选:C.根据抛物线的顶点式,可直接得出抛物线的顶点坐标.本题考查了二次函数的顶点式,从顶点式可以直接得出抛物线的顶点.2.【答案】D【解析】解:∵∠C=90°,sinA==,BC=6,∴AB=BC=×6=10;故选:D.根据三角函数的定义即可得出结果.本题主要考查了解直角三角形、正弦函数的定义;熟练掌握正弦函数的定义是解决问题的关键.3.【答案】B【解析】解:将y=x2-2x+3化为顶点式,得y=(x-1)2+2.将抛物线y=x2-2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为y=(x-4)2+4,故选:B.根据函数图象向上平移加,向右平移减,可得函数解析式.本题考查了二次函数图象与几何变换,函数图象的平移规律是:左加右减,上加下减.4.【答案】D【解析】解:∵k=-2<0,所以函数图象位于二四象限,在每一象限内y随x的增大而增大,图象是轴对称图象,故A、B、C错误.故选:D.反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大,根据这个性质选择则可.本题考查了反比例函数图象的性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.注意反比例函数的图象应分在同一象限和不在同一象限两种情况分析.5.【答案】A【解析】解:∵抛物线过A(-2,0)、O(0,0)两点,∴抛物线的对称轴为x==-1,∵a<0,抛物线开口向下,离对称轴越远,函数值越小,比较可知C点离对称轴远,对应的纵坐标值小,第9页,共19页即y1>y2,故选A.根据A(-2,0)、O(0,0)两点可确定抛物线的对称轴,再根据开口方向,B、C两点与对称轴的远近,判断y1与y2的大小关系.比较抛物线上两点纵坐标的大小,关键是确定对称轴,开口方向,两点与对称轴的远近.6.【答案】D【解析】解:过D作BF的平行线,交AC边于G,如下图所示:∵D为BC中点,DG∥BF∴∠CGD=∠CFB又∵∠C=∠C∴△CDG∽△CBF∴==,即:CG=CF=FG又E为AD的中点,BE的延长线交AC于F,DG∥BF同理可得:△AEF∽△ADG∴==,即:AF=AG=FG∴AF=FG=GC∴===1:2故选:D.过D作BF的平行线,交AC边于G,即:DG∥BF,又D为BC中点可得出:△CDG∽△CBF,即:==,CG=FC=FG;同理可得:△AEF∽△ADG,AF=AG=FG,所以AF=FG=GC,即:==.本题主要考查相似三角形的判定与性质,关键在于找出条件判断两个三角形相似,再运用相似三角形的性质求解.7.【答案】A【解析】解:观察函数图象可知:a<0,b>0,c<0,∴二次函数y=ax2+bx+c的图象开口向下,对称轴x=->0,与y轴的交点在y轴负半轴.故选:A.根据反比例函数图象和一次函数图象经过的象限,即可得出a<0、b>0、c<0,由此即可得出:二次函数y=ax2+bx+c的图象开口向下,对称轴x=->0,与y轴的交点在y轴负半轴,再对照四个选项中的图象即可得出结论.本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,根据反比例函数图象和一次函数图象经过的象限,找出a<0、b>0、c<0是解题的关键.8.【答案】B【解析】【分析】此题主要考查了二次函数图象与系数的关系,正确把握二次函数与方程之间的关系是解题关键.直接利用抛物线与x轴交点个数以及抛物线与方程之间的关系、函数图象与各第10页,共19页系数之间关系分析得出答案.【解答】解:如图所示:图象与x轴有两个交点,则b2-4ac>0,故①错误;∵图象开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号,∴b<0,∵图象与y轴交于x轴下方,∴c<0,∴abc>0,故②正确;当x=-1时,a-b+c>0,故③错误;∵二次函数y=ax2+bx+c的顶点坐标纵坐标为:-2,故二次函数y=ax2+bx+c向上平移小于2个单位,则平移后解析式y=ax2+bx+c-m与x轴有两个交点,此时关于x的一元二次方程ax2+bx+c-m=0有两个不相等的实数根,故-m<2,解得:m>-2,故④正确.∴正确的个数有2个.故选B.9.【答案】A【解析】解:作DE⊥AB于E,如图,∵∠C=90°,AC=BC=6,∴△ACB为等腰直角三角形,AB=AC=6,∴∠A=45°,在Rt△ADE中,设AE=x,则DE=x,AD=x,在Rt△BED中,tan∠DBE==,∴BE=5x,∴x+5x=6,解得x=,∴AD=×=2.故选:A.作DE⊥AB于E,先根据腰直角三角形的性质得到AB=AC=6,∠A=45°,设AE=x,则DE=x,AD=x,在Rt△BED中,利用∠DBE的正切得到BE=5x,然后由AE+BE=AB可计算出x=,再利用AD=x进行计算.本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质.第11页,共19页10.【答案】A【解析】【分析】根据题意结合图形,分情况讨论:①0≤x≤2时,根据S△APQ=AQ•AP,列出函数关系式,从而得到函数图象;②2≤x≤4时,根据S△APQ=S正方形ABCD-S△CP'Q'-S△ABQ'-S△AP'D列出函数关系式,从而得到函数图象,再结合四
本文标题:2020年安徽省中考数学总复习试卷解析版-
链接地址:https://www.777doc.com/doc-7506776 .html